【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足2f(x)+xf′(x)>x2(x∈R),則對(duì)x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

【答案】A
【解析】解:構(gòu)造函數(shù)F(x)=x2f(x),
則F'(x)=2xf(x)+x2f'(x)=x(2f(x)+xf'(x)),
當(dāng)x>0時(shí),F(xiàn)'(x)>x3>0,F(xiàn)(x)遞增;
當(dāng)x<0時(shí),F(xiàn)'(x)<x3<0,F(xiàn)(x)遞減,
所以F(x)=x2f(x)在x=0時(shí)取最小值,
從而F(x)=x2f(x)≥F(0)=0,
故選A.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點(diǎn),且CD=DE= ,CE=2EB=2

(1)證明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 中點(diǎn),

)求證: 平面;

)若, ,求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)n∈N* , 證明: + +…+ <ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )﹣ cos(2x+ ).
(1)數(shù)的單調(diào)增區(qū)間;
(2)若f(α)= ,α∈(0, ),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Γ: + =1(a>b>0)的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,O為坐標(biāo)原點(diǎn):

(1)求橢圓Г的方程:
(2)設(shè)點(diǎn)A在橢圓Г上,點(diǎn)B在直線y=2上,且OA⊥OB,求證: + 為定值:
(3)設(shè)點(diǎn)C在Γ上運(yùn)動(dòng),OC⊥OD,且點(diǎn)O到直線CD距離為常數(shù)d(0<d<2),求動(dòng)點(diǎn)D的軌跡方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.

(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017山西孝義考前熱身】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案