【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點,點M在線段PD上.

(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.

【答案】
(1)證明:∵在平行四邊形ABCD中,∠BCD=135°,∴∠ABC=45°,

∵AB=AC,∴AB⊥AC.

∵E,F(xiàn)分別為BC,AD的中點,∴EF∥AB,

∴EF⊥AC.

∵側(cè)面PAB⊥底面ABCD,且∠BAP=90°,

∴PA⊥底面ABCD.

又EF底面ABCD,

∴PA⊥EF.

又∵PA∩AC=A,PA平面PAC,AC平面PAC,

∴EF⊥平面PAC.


(2)解:∵PA⊥底面ABCD,AB⊥AC,∴AP,AB,AC兩兩垂直,

以A為原點,分別以AB,AC,AP為x軸、y軸和z軸建立空間直角坐標(biāo)系如圖:

則A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),

=(2,0,﹣2), =(﹣2,2,﹣2), , =(1,1,﹣2).

設(shè) =λ(0≤λ≤1),則 =(﹣2λ,2λ,﹣2λ),

= - =(1+2λ,1﹣2λ,2λ﹣2),

顯然平面ABCD的一個法向量為 =(0,0,1).

設(shè)平面PBC的法向量為 =(x,y,z),

,即

令x=1,得 =(1,1,1).

∴cos< , >= = ,cos< >= =

∵直線ME與平面PBC所成的角和此直線與平面ABCD所成的角相等,

∴| |=| |,即 ,

解得 ,或 (舍).


【解析】(1)由平行四邊形的性質(zhì)可得AB⊥AC,即EF⊥AC,由面面垂直的性質(zhì)得出PA⊥平面ABCD,故PA⊥EF,故EF⊥平面PAC;(2)以A為原點建立空間直角坐標(biāo)系,設(shè) =λ(0≤λ≤1),求出平面PBC,平面ABCD的法向量 的坐標(biāo),根據(jù)線面角相等列方程解出λ.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個命題中其中真命題個數(shù)是(  )

為了了解800名學(xué)生的成績,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k40;

線性回歸直線 恒過樣本點的中心 ;

隨機變量ξ服從正態(tài)分布N2,σ2)(σ0),若在(﹣,1)內(nèi)取值的概率為0.1,則在(2,3)內(nèi)的概率為0.4;

若事件滿足關(guān)系,則事件互斥.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足2f(x)+xf′(x)>x2(x∈R),則對x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“數(shù)列{an}成等比數(shù)列”是“數(shù)列{lgan+1}成等差數(shù)列”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ 存在單調(diào)遞減區(qū)間,且y=f(x)的圖象在x=0處的切線l與曲線y=ex相切,符合情況的切線l(
A.有3條
B.有2條
C.有1條
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內(nèi)戰(zhàn)平,直接進入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場).由于一班同學(xué)平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學(xué)沒能出場罰球”,求事件發(fā)生的概率;

(2)若兩隊在前三輪點球結(jié)束后打平,則進入一對一點球決勝,一對一球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結(jié)束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽. 若直至雙方場上每名隊員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負,本場比賽中若已知雙方在點球大戰(zhàn),以隨機變量記錄雙方進行一對一點球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函數(shù)f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函數(shù)g(x)的單調(diào)區(qū)間;
(3)若a=﹣2,正實數(shù)x1 , x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017廣東佛山二模】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機抽取該流水線上件產(chǎn)品作為樣本稱出它們的重量單位:克,重量的分組區(qū)間為, ,,由此得到樣本的頻率分布直方圖,如圖所示.

1根據(jù)頻率分布直方圖,求重量超過克的產(chǎn)品數(shù)量;

2在上述抽取的件產(chǎn)品中任取件,設(shè)為重量超過克的產(chǎn)品數(shù)量,求的分布列;

3從該流水線上任取件產(chǎn)品,求恰有件產(chǎn)品的重量超過克的概率.

查看答案和解析>>

同步練習(xí)冊答案