【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥BD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b,AC與BD交于點O,M為OC的中點.
(1)求證:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值為 ,求a:b的值.
【答案】
(1)證明:因為底面ABCD是菱形,所以AC⊥BD,
又PA⊥BD,PA∩AC=A,
所以BD⊥面PAC,
又因為 PD面ABCD,
所以 平面PAC⊥平面ABCD
(2)解:由∠PAC=90°可知PA⊥AC,
又由(1)可知平面PAC⊥平面ABCD
平面PAC∩平面ABCD=AC,
所以 PA⊥平面ABCD,
故如圖,
以A為坐標原點,AD,AP所在直線分別為y,z軸建立空間直角坐標系,
則P(0,0,b),D(0,a,0),M( , ,0),O( , ,0)
從而 =(0,a,﹣b), =( a, ,﹣b),
=(﹣ , ,0),
因為BD⊥面PAC,所以平面PMO的一個法向量為 =(﹣ , ,0),
設平面PMD的法向量為 =(x,y,z),
由 , ,得
,
令y=b,得x= ,z=a,即 ,
設 與 的夾角為θ,則二面角O﹣PM﹣D的大小與θ相等,
由 ,得
化簡得 4b=3a,即a:b=4:3
【解析】(1)推導出AC⊥BD,PA⊥BD,由此能證明平面PAC⊥平面ABCD.(2)以A為坐標原點,AD,AP所在直線分別為y,z軸建立空間直角坐標系,利用利用向量法能求出a:b的值.
科目:高中數學 來源: 題型:
【題目】教育部記錄了某省2008到2017年十年間每年自主招生錄取的人數為方便計算,2008年編號為1,2009年編號為2,,2017年編號為10,以此類推數據如下:
年份編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數 | 3 | 5 | 8 | 11 | 13 | 14 | 17 | 22 | 30 | 31 |
Ⅰ根據前5年的數據,利用最小二乘法求出y關于x的回歸方程,并計算第8年的估計值和實際值之間的差的絕對值;
Ⅱ根據Ⅰ所得到的回歸方程預測2018年該省自主招生錄取的人數.
其中,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為彼此不重合的三個平面,為直線,給出下列結論:
①若 ,則 ②若,且 則
③若直線與平面內的無數條直線垂直,則
④若內存在不共線的三點到的距離相等,則
上面結論中,正確的序號為_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,極點為O,點A的極坐標為(2, ),以OA為斜邊作等腰直角三角形OAB(其中O,A,B按逆時針方向分布)
(1)求點B的極坐標;
(2)求三角形外接圓的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知向量 =(2a,1), =(2b﹣c,cosC),且 ∥ .
(Ⅰ)求角A的大;
(Ⅱ)若 ,求b+c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(0,+∞),f′(x)為f(x)的導函數,且滿足xf′(x)>f(x),則不等式(x﹣1)f(x+1)>f(x2﹣1)的解集是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x=1是 的一個極值點.
(1)求函數f(x)的單調減區(qū)間;
(2)設函數 ,若函數g(x)在區(qū)間[1,2]內單調遞增,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com