(本小題滿分12分)已知橢圓的離心率為,定點,橢圓短軸的端點是,,且.
(1)求橢圓的方程;
(2)設(shè)過點且斜率不為的直線交橢圓于,兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標原點,且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,定點M(1,0),橢圓短軸的端點是B1,B2,且
(1)求橢圓C的方程;
(2)設(shè)過點M且斜率不為0的直線交橢圓C于A,B兩點.試問x軸上是否存在定點P,使PM平分∠APB?若存在,求出點P的坐標;若不存在,說明理由,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 求滿足下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過兩點;
(2)經(jīng)過點(2,-3)且與橢圓具有共同的焦點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的離心率為,其中左焦點F(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,
求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且
(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com