(本題滿分13分)已知雙曲線的右焦點(diǎn)與拋物線的焦點(diǎn)重合,求該雙曲線的焦點(diǎn)到其漸近線的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題16分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
(Ⅲ)若點(diǎn)的橫坐標(biāo)為,直線與拋物線有兩個不同的交點(diǎn),與圓有兩個不同的交點(diǎn),求當(dāng)時(shí),的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)在平面直角坐標(biāo)系中,已知橢圓:()的左焦點(diǎn)為,且點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經(jīng)過橢圓的左焦點(diǎn).求直線與該橢圓相交的弦長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時(shí),求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,已知橢圓的長軸為,過點(diǎn)的直線與軸垂直,直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個頂點(diǎn),且橢圓的離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上異于、的任意一點(diǎn),軸,為垂足,延長到點(diǎn)使得,連接并延長交直線于點(diǎn),為的中點(diǎn).試判斷直線與以為直徑的圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,,且.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且斜率不為的直線交橢圓于,兩點(diǎn).試問軸上是否存在定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為,線段的中點(diǎn)分別為,且△ 是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過做直線交橢圓于P,Q兩點(diǎn),使,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,點(diǎn)P到兩定點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,過點(diǎn)的直線C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)設(shè)d為A、B兩點(diǎn)間的距離,d是否存在最大值、最小值,若存在, 求出d的最大值、最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com