【題目】已知函數(shù).

(1)若函數(shù)有兩個不相等的正零點,求的取值范圍;

(2)若函數(shù)上的最小值為-3,求的值.

【答案】(1);(2).

【解析】試題分析: (1)將函數(shù)有兩個不相等的正零點轉化為對應的二次方程有兩個不相等的正根,利用二次方程根的分布可得關于的不等式組,解不等式組可得的取值范圍;(2)先利用對稱軸方程與區(qū)間之間的關系進行討論,可得函數(shù)的最小值,再由最小值為求出對應的值即可.

試題解析:(1)由函數(shù)有兩個不相等的正零點,可得對于方程,有,解得.

(2)函數(shù)的圖象的對稱軸是,當,即時,函數(shù)在區(qū)間上單調遞增,則;當,即時,;當,即時,函數(shù)在區(qū)間上單調遞減,則.故.

時,令,無解;

時,令,解得;

時,令,無解.

綜上,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且),設),數(shù)列的前項和.

1)求、的值;

2)利用“歸納—猜想—證明”求出的通項公式;

3)求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.

(1)求未來4年中,至多1年的年入流量超過120的概率;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系:

年入流量

發(fā)電量最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點處的切線方程;

2)若曲線與直線只有一個交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某文體局為了解“跑團”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在學習函數(shù)時,我們經(jīng)歷了“確定函數(shù)的表達式利用函數(shù)圖象研究其性質——運用函數(shù)解決問題“的學習過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學的函數(shù)圖象.同時,我們也學習過絕對值的意義

結合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:

在函數(shù)中,當時,;當時,

1)求這個函數(shù)的表達式;

2)在給出的平面直角坐標系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質;

3)在圖中作出函數(shù)的圖象,結合你所畫的函數(shù)圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解高一學生的體能情況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,圖中從左到右各小長方形面積之比為,第二小組頻數(shù)為12.

1)第二小組的頻率是多少?樣本容量是多少?

2)若次數(shù)在110以上(含110次)為達標,試估計該校全體高一學生的達標率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)ab,c滿足a+b+c0,a2+b2+c2,求a4+b4+c4的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的定義域為.

(1)當時,求函數(shù)的值域;

(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;

3)求函數(shù)在定義域上的最大值及最小值,并求出函數(shù)取最值時的值.

查看答案和解析>>

同步練習冊答案