1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,則必有( 。
A.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$
B.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$
C.$cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$
D.$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$

分析 設(shè)cosθ=x,則0<x<1,構(gòu)造函數(shù)f(x)=$\frac{{e}^{x}}{x}$,由求導(dǎo)公式和法則求出f′(x),根據(jù)條件判斷出f′(x)的符號(hào),得到函數(shù)f(x)的單調(diào)性,再利用余弦函數(shù)的性質(zhì)得到f(cosθ1)<f(cosθ2),即可求出答案.

解答 解:設(shè)cosθ=x,則0<x<1
構(gòu)造函數(shù)f(x)=$\frac{{e}^{x}}{x}$,
則f′(x)=$\frac{{e}^{x}(1-x)}{{x}^{2}}$>0,
∴函數(shù)f(x)在(0,1)上單調(diào)遞減,
∵y=cosθ在(0,$\frac{π}{2}$)單調(diào)遞減,
∴1>cosθ1>cosθ2>0
∴f(cosθ1)<f(cosθ2),
∴$\frac{{e}^{cos{θ}_{1}}}{cos{θ}_{1}}$<$\frac{{e}^{cos{θ}_{2}}}{cos{θ}_{2}}$,
∴$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$,
故選:D

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系,以及利用條件構(gòu)造函數(shù),利用函數(shù)的單調(diào)性解不等式是解決本題的關(guān)鍵,考查學(xué)生的解題構(gòu)造能力和轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\overrightarrow a$,$\overrightarrow b$滿(mǎn)足:$|\overrightarrow a|=3$,$|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=\frac{3}{2}$,則$|\overrightarrow a-\overrightarrow b|$=( 。
A.$\sqrt{10}$B.$\sqrt{5}$C.3D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.當(dāng)點(diǎn)P在圓x2+y2=1上變動(dòng)時(shí),它與定點(diǎn)Q(3,0)相連,線(xiàn)段PQ的中點(diǎn)M的軌跡方程是( 。
A.(x-3)2+y2=1B.(2x-3)2+4y2=1C.(x+3)2+y2=4D.(2x+3)2+4y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知全集U={-1,2,3,a},集合M={-1,3}.若∁UM={2,5},則實(shí)數(shù)a的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知$sin({α+\frac{π}{3}})=-\frac{4}{5}$,$-\frac{π}{2}<α<0$,則cosα=$\frac{3-4\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則不等式(x+2017)3f(x+2017)+27f(-3)>0的解集是( 。
A.(-2020,-2017)B.(-∞,-2017)C.(-2018,-2017)D.(-∞,-2020)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,BC=1,B=$\frac{2π}{3}$,△ABC面積S=$\sqrt{3}$,則邊AC長(zhǎng)為$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線(xiàn)的方程”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在數(shù)列{an}中,${a_1}=\frac{1}{2},{a_n}_{+1}=1-\frac{1}{a_n}$,則a5=( 。
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案