A. | ${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$ | |
B. | ${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$ | |
C. | $cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$ | |
D. | $cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$ |
分析 設(shè)cosθ=x,則0<x<1,構(gòu)造函數(shù)f(x)=$\frac{{e}^{x}}{x}$,由求導(dǎo)公式和法則求出f′(x),根據(jù)條件判斷出f′(x)的符號(hào),得到函數(shù)f(x)的單調(diào)性,再利用余弦函數(shù)的性質(zhì)得到f(cosθ1)<f(cosθ2),即可求出答案.
解答 解:設(shè)cosθ=x,則0<x<1
構(gòu)造函數(shù)f(x)=$\frac{{e}^{x}}{x}$,
則f′(x)=$\frac{{e}^{x}(1-x)}{{x}^{2}}$>0,
∴函數(shù)f(x)在(0,1)上單調(diào)遞減,
∵y=cosθ在(0,$\frac{π}{2}$)單調(diào)遞減,
∴1>cosθ1>cosθ2>0
∴f(cosθ1)<f(cosθ2),
∴$\frac{{e}^{cos{θ}_{1}}}{cos{θ}_{1}}$<$\frac{{e}^{cos{θ}_{2}}}{cos{θ}_{2}}$,
∴$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$,
故選:D
點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系,以及利用條件構(gòu)造函數(shù),利用函數(shù)的單調(diào)性解不等式是解決本題的關(guān)鍵,考查學(xué)生的解題構(gòu)造能力和轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-3)2+y2=1 | B. | (2x-3)2+4y2=1 | C. | (x+3)2+y2=4 | D. | (2x+3)2+4y2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2020,-2017) | B. | (-∞,-2017) | C. | (-2018,-2017) | D. | (-∞,-2020) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | -1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com