10.“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線的方程”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線的方程,則(m-2)(6-m)<0,m<2或m>6,即可得出結(jié)論.

解答 解:方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線的方程,則(m-2)(6-m)<0,
∴m<2或m>6,
∴“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線的方程”的既不充分也不必要條件,
故選D.

點(diǎn)評(píng) 本題考查充要條件的判斷,考查學(xué)生的計(jì)算能力,利用方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線的方程,則(m-2)(6-m)<0,求出m的范圍是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是( 。
A.[-1,2]B.[-2,2]C.[-1,3]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,則必有( 。
A.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$
B.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$
C.$cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$
D.$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知a=0.5${\;}^{\frac{1}{3}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,c=log2.51.5,則a,b,c的大小關(guān)系(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,如果有性質(zhì)acosA=bcosB,這個(gè)三角形的形狀是( 。
A.等邊三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC,|AB|=8,AC與BC邊所在直線的斜率之積為定值m,
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)當(dāng)m=1時(shí),過(guò)點(diǎn)E(0,1)的直線l與曲線C相交于P、Q兩點(diǎn),求P、Q兩點(diǎn)的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.化簡(jiǎn):$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{DC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為( 。
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
分組頻數(shù)
[2,4)2
[4,6)10
[6,8)16
[8,10)8
[10,12]4
合計(jì)40
(1)求頻率分布直方圖中a,b的值;
(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;
(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案