19.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為( 。
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

分析 由題意,直觀圖是三棱柱與三棱錐的組合體,利用所給數(shù)據(jù),求出體積.

解答 解:由題意,直觀圖是三棱柱與三棱錐的組合體,
體積為$\frac{1}{2}×2×\sqrt{3}×4+\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\sqrt{3}$=4$\sqrt{3}$+1.
故選A.

點(diǎn)評 本題考查了棱錐的三視圖和結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知全集U={-1,2,3,a},集合M={-1,3}.若∁UM={2,5},則實(shí)數(shù)a的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1為雙曲線的方程”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,$\frac{π}{2}$))的圖象在y軸上的截距為1,在相鄰兩個(gè)最值點(diǎn)$({x_0}-\frac{3}{2},2)$和(x0,-2)上(x0>0),函數(shù)f(x)分別取最大值和最小值.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)=$\frac{k+1}{2}$在區(qū)間$[0,\frac{3}{2}]$內(nèi)有兩個(gè)不同的零點(diǎn),求k的取值范圍;
(3)求函數(shù)f(x)在區(qū)間$[\frac{13}{4},\frac{23}{4}]$上的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知回歸方程$\stackrel{∧}{y}$=2x+1,而試驗(yàn)得到一組數(shù)據(jù)是(2,5.1),(3,6.9),(4,9.1),則殘差平方和是( 。
A.0.01B.0.02C.0.03D.0.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知α為第三象限的角,且$sinα=-\frac{{\sqrt{5}}}{5}$,則tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在數(shù)列{an}中,${a_1}=\frac{1}{2},{a_n}_{+1}=1-\frac{1}{a_n}$,則a5=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)(1+3i)(2a+i)的實(shí)部與虛部相等,其中a為實(shí)數(shù),則a=( 。
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.雙曲線$\frac{y^2}{2}-{x^2}=1$的焦距是$2\sqrt{3}$;漸近線方程為$\sqrt{2}x±y=0$.

查看答案和解析>>

同步練習(xí)冊答案