水庫的蓄水量隨時間而變化,現(xiàn)用表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關于的近似函數(shù)關系式為:

(1)該水庫的蓄水量小于50的時期稱為枯水期,以表示第月份(),問:同一年內哪些月份是枯水期?
(2)求一年內哪個月份該水庫的蓄水量最大,并求最大蓄水量。(取計算)

(1)枯水期為1月,2月,3月,4月,11月,12月共6個月。
(2)知一年內該水庫的最大蓄水量是108.32億立方米。

解析試題分析:(1)①當時,化簡得
解得.
②當時,,化簡得
解得.
綜上得,,或.故知枯水期為1月,2月,3月,4月,11月,12月共6個月。
(2)由(1)知,的最大值只能在(4,10)內達到。
,
,解得舍去)。
變化時,的變化情況如下表:


(4,8)
8
(8,10)

+
0
-


極大值

由上表,時取得最大值(億立方米)。
故知一年內該水庫的最大蓄水量是108.32億立方米。
考點:本題主要考查函數(shù)模型,導數(shù)的應用,求函數(shù)的最值。
點評:典型題,導數(shù)的基本應用問題,通過“求導數(shù)、求駐點、解不等式、定導數(shù)符號”確定函數(shù)的單調區(qū)間及極值。當“駐點”唯一時,極值點即為最值點。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某地方政府準備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.

(1)分別寫出用表示和用表示的函數(shù)關系式(寫出函數(shù)定義域);
(2)怎樣設計能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

國家助學貸款是由財政貼息的信用貸款,旨在幫助高校家庭經(jīng)濟困難學生支付在校期間所需的學費、住宿費及生活費。每一年度申請總額不超過6000元。某大學2012屆畢業(yè)生凌霄在本科期間共申請了24000元助學貸款,并承諾畢業(yè)后3年(按36個月計)內還清。簽約單位提供的工資標準為第一年內每月1500元,第13個月開始每月工資比前一個月增加5%直到4000元。凌霄同學計劃前12個月每月還款500元,第13個月開始每月還款比前一個月多元.
(1)若凌霄同學恰好在第36個月(即畢業(yè)后3年)還清貸款,求值;(6分)
(2)當時,凌霄同學將在畢業(yè)后第幾個月還清最后一筆貸款?他當月工資余額能否滿足當月3000元的基本生活費?(6分)
(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進行運輸,且須提前預訂.
現(xiàn)有貨運收費項目及收費標準表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標準表

運輸工具
運輸費單價:元/(噸•千米)
冷藏費單價:元/(噸•時)
固定費用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時,火車的速度為       千米/時:
(2)設每天用汽車和火車運輸?shù)目傎M用分別為(元)和(元),分別求、的函數(shù)關系式(不必寫出的取值范圍),及為何值時(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應提前為下周預定哪種運輸工具,才能使每天的運輸總費用較省?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是一個二次函數(shù)的圖象.寫出的解集;

(2)求這個二次函數(shù)的解析式;
(3)當實數(shù)在何范圍內變化時,在區(qū)間 上是單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)證明:;
(II)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商店經(jīng)銷一種奧運會紀念品,每件產品的成本為30元,并且每賣出一件產品需向稅務部門上交元(為常數(shù),2≤a≤5 )的稅收。設每件產品的售價為x元(35≤x≤41),根據(jù)市場調查,日銷售量與(e為自然對數(shù)的底數(shù))成反比例。已知每件產品的日售價為40元時,日銷售量為10件。
(1)求該商店的日利潤L(x)元與每件產品的日售價x元的函數(shù)關系式;
(2)當每件產品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知,若滿足,
(1)求實數(shù)的值;       (2)判斷函數(shù)的單調性,并加以證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
專家通過研究學生的學習行為,發(fā)現(xiàn)學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增,中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設表示學生注意力隨時間(分鐘)的變化規(guī)律(越大,表明學生注意力越大),經(jīng)過試驗分析得知:
(Ⅰ)講課開始后多少分鐘,學生的注意力最集中?能堅持多少分鐘?
(Ⅱ)講課開始后5分鐘時與講課開始后25分鐘時比較,何時學生的注意力更集中?
(Ⅲ)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講完這道題目?

查看答案和解析>>

同步練習冊答案