(本小題滿(mǎn)分13分)
專(zhuān)家通過(guò)研究學(xué)生的學(xué)習(xí)行為,發(fā)現(xiàn)學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,設(shè)表示學(xué)生注意力隨時(shí)間(分鐘)的變化規(guī)律(越大,表明學(xué)生注意力越大),經(jīng)過(guò)試驗(yàn)分析得知:
(Ⅰ)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多少分鐘?
(Ⅱ)講課開(kāi)始后5分鐘時(shí)與講課開(kāi)始后25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中?
(Ⅲ)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目?

(1) 堅(jiān)持10分鐘(2) 學(xué)生的注意力比講課開(kāi)始后5分鐘時(shí)更集中(3) 經(jīng)過(guò)適當(dāng)安排,老師能在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目

解析試題分析:解:(Ⅰ)當(dāng)時(shí), 是增函數(shù),

當(dāng)時(shí), 是減函數(shù),且
所以講課開(kāi)始10分鐘,學(xué)生的注意力最集中,能堅(jiān)持10分鐘.      ………………………5分
(Ⅱ),,所以講課開(kāi)始后25分鐘時(shí),學(xué)生的注意力比講課開(kāi)始后5分鐘時(shí)更集中.                                          ……………8分
(Ⅲ) 當(dāng)時(shí),令 .
當(dāng)時(shí)令
,得
所以學(xué)生的注意力在180以上,所持續(xù)的時(shí)間
所以經(jīng)過(guò)適當(dāng)安排,老師能在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目.      …………………13分
考點(diǎn):本試題考查了函數(shù)模型的運(yùn)用。
點(diǎn)評(píng):構(gòu)造二次函數(shù)模型,函數(shù)解析式求解是關(guān)鍵,解決實(shí)際問(wèn)題通常有四個(gè)步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號(hào),建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問(wèn)題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

水庫(kù)的蓄水量隨時(shí)間而變化,現(xiàn)用表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫(kù)的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為:

(1)該水庫(kù)的蓄水量小于50的時(shí)期稱(chēng)為枯水期,以表示第月份(),問(wèn):同一年內(nèi)哪些月份是枯水期?
(2)求一年內(nèi)哪個(gè)月份該水庫(kù)的蓄水量最大,并求最大蓄水量。(取計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)設(shè)關(guān)于x的方程=0.
(Ⅰ) 如果b=1,求實(shí)數(shù)x的值;
(Ⅱ) 如果,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)南昌市在加大城市化進(jìn)程中,環(huán)境污染問(wèn)題也日益突出。據(jù)環(huán)保局測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(chǎng)(視作污染源)的污染強(qiáng)度分別為,它們連線(xiàn)上任意一點(diǎn)C處的污染指數(shù)等于兩家工廠(chǎng)對(duì)該處的污染指數(shù)之和.設(shè)).
(1) 試將表示為的函數(shù);
(2) 若,且時(shí),取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一變壓器的鐵芯截面為正十字型,為保證所需的磁通量,要求十字應(yīng)具有 的面積,問(wèn)應(yīng)如何設(shè)計(jì)十字型寬及長(zhǎng),才能使其外接圓的周長(zhǎng)最短,這樣可使繞在鐵芯上的銅線(xiàn)最節(jié)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)="2" sin(0≤x≤5),點(diǎn)A、B分別是函數(shù)y=f(x)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)沒(méi)點(diǎn)A、B分別在角、的終邊上,求tan()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

解方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠(chǎng)生產(chǎn)一種產(chǎn)品,已知該產(chǎn)品的月產(chǎn)量x噸與每噸產(chǎn)品的價(jià)格(元)之間的關(guān)系為,且生產(chǎn)噸的成本為(元).問(wèn)該廠(chǎng)每月生產(chǎn)多少?lài)嵁a(chǎn)品才能使利潤(rùn)達(dá)到最大?最大利潤(rùn)是多少?(利潤(rùn)=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)不等式,當(dāng)時(shí)恒成立.求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案