解方程:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商店經(jīng)銷一種奧運(yùn)會紀(jì)念品,每件產(chǎn)品的成本為30元,并且每賣出一件產(chǎn)品需向稅務(wù)部門上交元(為常數(shù),2≤a≤5 )的稅收。設(shè)每件產(chǎn)品的售價為x元(35≤x≤41),根據(jù)市場調(diào)查,日銷售量與(e為自然對數(shù)的底數(shù))成反比例。已知每件產(chǎn)品的日售價為40元時,日銷售量為10件。
(1)求該商店的日利潤L(x)元與每件產(chǎn)品的日售價x元的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的日售價為多少元時,該商品的日利潤L(x)最大,并求出L(x)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
列車提速可以提高鐵路運(yùn)輸量.列車運(yùn)行時,前后兩車必須要保持一個“安全間隔距離d(千米)”,“安全間隔距離d(千米)”與列車的速度v(千米/小時)的平方成正比(比例系數(shù)k=).假設(shè)所有的列車長度l均為0.4千米,最大速度均為v0(千米/小時).問:列車車速多大時,單位時間流量Q= 最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
專家通過研究學(xué)生的學(xué)習(xí)行為,發(fā)現(xiàn)學(xué)生的注意力隨著老師講課時間的變化而變化,講課開始時,學(xué)生的興趣激增,中間有一段時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)表示學(xué)生注意力隨時間(分鐘)的變化規(guī)律(越大,表明學(xué)生注意力越大),經(jīng)過試驗(yàn)分析得知:
(Ⅰ)講課開始后多少分鐘,學(xué)生的注意力最集中?能堅持多少分鐘?
(Ⅱ)講課開始后5分鐘時與講課開始后25分鐘時比較,何時學(xué)生的注意力更集中?
(Ⅲ)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實(shí)際出廠單價不能低于51元.
(1)當(dāng)一次訂購量為多少個時,零件的實(shí)際出廠單價恰降為51元?
(2)設(shè)一次訂購量為x個,零件的實(shí)際出廠單價為P元,寫出函數(shù)P=f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)通常情況下,同一地區(qū)一天的溫度隨時間變化的曲線接近于函數(shù)的圖像.2013年1月下旬荊門地區(qū)連續(xù)幾天最高溫度都出現(xiàn)在14時,最高溫度為;最低溫度出現(xiàn)在凌晨2時,最低溫度為零下.
(Ⅰ)請推理荊門地區(qū)該時段的溫度函數(shù)
的表達(dá)式;
(Ⅱ)29日上午9時某高中將舉行期末考試,如果溫度低于,教室就要開空調(diào),請問屆時學(xué)校后勤應(yīng)該送電嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分) 某車間生產(chǎn)某機(jī)器的兩種配件A和B,生產(chǎn)配件A成本費(fèi)y與該車間的工人人數(shù)x成反比,而生產(chǎn)配件B成本費(fèi)y與該車間的工人人數(shù)x成正比,如果該車間的工人人數(shù)為10人時,這兩項費(fèi)用y和y分別為2萬元和8萬元,那么要使這兩項費(fèi)用之和最小,該車間的工人人數(shù)x應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
某商場根據(jù)調(diào)查,估計家電商品從年初(1月)開始的個月內(nèi)累計的需求量(百件)為
(1)求第個月的需求量的表達(dá)式.
(2)若第個月的銷售量滿足(單位:百件),每件利潤元,求該商場銷售該商品,求第幾個月的月利潤達(dá)到最大值?最大是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com