是等腰三角形,=,則以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線(xiàn)的離心率為
A.B.C.D.
B 由題意知設(shè)焦距為2c,則|AB|=2c,|BC|=2c,則|AC|=2|AB|cos30°=,
所以由雙曲線(xiàn)的定義知,,故選B.

分析:根據(jù)題設(shè)條件可知2c=|BC|,所以|AC|=2×2c×sin600="2" c,由雙曲線(xiàn)的定義能夠求出2a,從而導(dǎo)出雙曲線(xiàn)的離心率.
解:由題意2c=|BC|,所以|AC|=2×2c×sin600=2c,由雙曲線(xiàn)的定義,有2a=|AC|-|BC|=2c-2c?a=(-1)c,

故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的的右頂點(diǎn)為A,離心率,過(guò)左焦點(diǎn)作直線(xiàn)與橢圓交于點(diǎn)P,Q,直線(xiàn)AP,AQ分別與直線(xiàn)交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線(xiàn)段為直徑的圓經(jīng)過(guò)焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓,直線(xiàn)過(guò)橢圓左焦點(diǎn)且不與軸重合, 與橢圓交于,兩點(diǎn),當(dāng)軸垂直時(shí),,若點(diǎn)
(1)求橢圓的方程;
(2)直線(xiàn)繞著旋轉(zhuǎn),與圓交于兩點(diǎn),若,求的面積 的取值范圍(為橢圓的右焦點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是橢圓上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),是坐標(biāo)原點(diǎn),若的角平分線(xiàn)上一點(diǎn),且,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它與直線(xiàn)相交于P、Q兩點(diǎn),若,求橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1,F2是橢圓的左、右焦點(diǎn),點(diǎn)P在橢圓上,且記線(xiàn)段PF1與y軸的交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若△F1OQ與四邊形OF2PQ的面積之比為1: 2,則該橢圓的離心率等于   (       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知橢圓C的中心O在原點(diǎn),長(zhǎng)軸在x軸上,焦距為,短軸長(zhǎng)為8,
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)作傾斜角為的直線(xiàn)交橢圓C于A(yíng)、B兩點(diǎn),求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,直線(xiàn)過(guò)點(diǎn),,且與橢圓相切于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的動(dòng)直線(xiàn)與曲線(xiàn)相交于不同的兩點(diǎn)、,曲線(xiàn)在點(diǎn)、處的切線(xiàn)交于點(diǎn).試問(wèn):點(diǎn)是否在某一定直線(xiàn)上,若是,試求出定直線(xiàn)的方程;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是橢圓的不垂直于對(duì)稱(chēng)軸的弦,的中點(diǎn),為坐標(biāo)原點(diǎn),則____________

查看答案和解析>>

同步練習(xí)冊(cè)答案