已知點是橢圓上的動點,為橢圓的兩個焦點,是坐標原點,若的角平分線上一點,且,則的取值范圍是(   )
A.B.C.D.
B
解:由橢圓  的方程可得,c=
由題意可得,當點P在橢圓與y軸交點處時,點M與原點O重合,此時|OM|取最小值0.
當點P在橢圓與x軸交點處時,點M與焦點F1重合,此時|OM|取最大值 c=
∵xy≠0,∴|OM|的取值范圍是(0,).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓(a>b>0),點在橢圓上。
(I)求橢圓的離心率。
(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點定位】本小題主要考查橢圓的標準方程和幾何性質、直線的方程、平面內兩點間距離公式等基礎知識. 考查用代數(shù)方法研究圓錐曲線的性質,以及數(shù)形結合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓上有一點M,是橢圓的兩個焦點,若 ,則橢圓離心率的范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為橢圓的左、右焦點,是坐標原點,過作垂直于軸的直線交橢圓于.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點的直線與橢圓交于、兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、為橢圓的兩個焦點,點上一動點(異于橢圓的長軸的兩個端點),則△的重心的軌跡是(    )
A.一個橢圓,且與具有相同的離心率
B.一個橢圓,但與具有不同的離心率
C.一個橢圓(去掉長軸的兩個端點),且與具有相同的離心率
D.一個橢圓(去掉長軸的兩個端點),但與具有不同的離心率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,它的一條準線為,過點的直線與橢圓交于、兩點.當軸垂直時,.
(1)求橢圓的方程;
(2)若,求的內切圓面積最大時正實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是等腰三角形,=,則以為焦點且過點的雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設C是橢圓:上任意一點,A、B是焦點,則在∆ABC中有:,類似地,點C是雙曲線任意一點,A、B是兩焦點,則∆ABC中有____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的一個焦點為(2,0),則它的離心率為( )
A.B.C.D.2

查看答案和解析>>

同步練習冊答案