【題目】如圖,在邊長(zhǎng)為a的菱形ABCD中,,E,F是PA和AB的中點(diǎn)。
(1)求證: EF||平面PBC ;
(2)求E到平面PBC的距離.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)欲證EF∥平面PBC,根據(jù)直線與平面平行的判定定理可知只需證EF與平面PBC內(nèi)一直線平行,而EF∥PB,又EF平面PBC,PB平面PBC,滿足定理所需條件;(2)在面ABCD內(nèi)作過F作FH⊥BC于H,又EF∥平面PBC,故點(diǎn)E到平面PBC的距離等于點(diǎn)F到平面PBC的距離FH.在直角三角形FBH中,求出FH即可,最后根據(jù)點(diǎn)E到平面PBC的距離等于點(diǎn)F到平面PBC的距離即可求出所求
試題解析:(1)證明:
又
故
(2)解:在面ABCD內(nèi)作過F作
又 ,,
又,故點(diǎn)E到平面PBC的距離等于點(diǎn)F到平面PBC的距離FH。
在直角三角形FBH中,,
故點(diǎn)E到平面PBC的距離等于點(diǎn)F到平面PBC的距離等于。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;
:實(shí)數(shù)滿足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bx﹣axlnx(a>0)的圖象在點(diǎn)(1,f(1))處的切線與直線平y(tǒng)=(1﹣a)x行.
(1)若函數(shù)y=f(x)在[e,2e]上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)設(shè)g(x)= ,若存在x1∈[e,e2],使g(x1)≤ 成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)班級(jí)共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) | 105 |
已知從甲、乙兩個(gè)班級(jí)中隨機(jī)抽取1名學(xué)生,其成績(jī)?yōu)閮?yōu)秀的概率為.
(1)請(qǐng)完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為
(1)求該曲線C的直角坐標(biāo)系方程及離心率
(2)已知點(diǎn)為曲線C上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為迎接校運(yùn)動(dòng)會(huì)的到來,在三年級(jí)招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運(yùn)動(dòng),其余人員不喜歡運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表,并說明是否有95%的把握認(rèn)為性別與喜歡運(yùn)動(dòng)有關(guān);
喜歡運(yùn)動(dòng) | 不喜歡運(yùn)動(dòng) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)如果喜歡運(yùn)動(dòng)的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運(yùn)動(dòng)的女志愿者中抽取2名負(fù)責(zé)處理應(yīng)急事件,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.
附:K2=,
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)設(shè),若在上的值域?yàn)?/span>,求實(shí)數(shù)的值;
(3)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com