已知△ABC中,各點的坐標分別為,求:
(1)BC邊上的中線AD的長度和方程;
(2)△ABC的面積.

(1)    (2)3

解析試題分析:解:(1)求得點D坐標為(0,3)  2分
  4分
直線AD的方程為 7分
(2)BC=  8分
直線BC的方程為  10分
點A到直線BC的距離為  12分
  14分
考點:直線方程
點評:主要是考查了直線方程以及三角形的面積,利用點到直線距離求解高度是關鍵,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知平面內(nèi)兩點.
(1)求的中垂線方程;
(2)求過點且與直線平行的直線的方程;
(3)一束光線從點射向(Ⅱ)中的直線,若反射光線過點,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(文)已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線 相切.
(1)求圓的標準方程;
(2)設直線與圓相交于兩點,求實數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線.
(Ⅰ)若,求實數(shù)的值;(2)當時,求直線之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線經(jīng)過兩點P1(4,-2)和P2(-1,8)。
(1)求直線的斜率;
(2)求直線的一般式方程,并把它寫成斜截式、截距式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過點作直線,使它被兩相交直線所截得的線段恰好被點平分,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線過點
(1)當直線與點、的距離相等時,求直線的方程;
(2)當直線軸、軸圍成的三角形的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在平面直角坐標系xOy中,平行于x軸且過點A(3,2)的入射光線 l1
被直線l:y=x反射.反射光線l2y軸于B點,圓C過點A且與l1, l2都相切.

(1)求l2所在直線的方程和圓C的方程;
(2)設分別是直線l和圓C上的動點,求的最小值及此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分8分)已知直線經(jīng)過點,且垂直于直線,
(1)求直線的方程;(2)求直線與兩坐標軸圍成三角形的面積。

查看答案和解析>>

同步練習冊答案