15.若a1,a2,a3,…,an均為正數(shù),則有
二元均值不等式:${a_1}+{a_2}≥2\sqrt{{a_1}•{a_2}}$,當(dāng)且僅當(dāng)a1=a2時(shí)取等號(hào);
三元均值不等式:${a_1}+{a_2}+{a_3}≥3\root{3}{{{a_1}•{a_2}•{a_3}}}$,當(dāng)且僅當(dāng)a1=a2=a3時(shí)取等號(hào);
四元均值不等式:${a_1}+{a_2}+{a_3}+{a_4}≥4\root{4}{{{a_1}•{a_2}•{a_3}•{a_4}}}$,當(dāng)且僅當(dāng)a1=a2=a3=a4時(shí)取等號(hào).
(1)猜想n元均值不等式;
(2)若x,y,z均為正數(shù),且x+y+z=6,求xyz的最大值.

分析 (1)an,>0,n∈N*,猜想n元均值不等式:a1+a2+…+an≥n$\root{n}{{a}_{1}{a}_{2}•…•{a}_{n}}$,當(dāng)且僅當(dāng)a1=a2=a3=…=an時(shí)取等號(hào).
(2)x,y,z均為正數(shù),且x+y+z=6,利用6≥$3\root{3}{xyz}$,即可得出.

解答 解:(1)a1,a2,a3,…,an均為正數(shù),猜想n元均值不等式:a1+a2+…+an≥n$\root{n}{{a}_{1}{a}_{2}•…•{a}_{n}}$,當(dāng)且僅當(dāng)a1=a2=a3=…=an時(shí)取等號(hào).
(2)x,y,z均為正數(shù),且x+y+z=6,則6≥$3\root{3}{xyz}$,化為:xyz≤8,當(dāng)且僅當(dāng)x=y=z=2時(shí)取等號(hào).
∴xyz的最大值為8.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、猜想歸納能力,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過(guò)點(diǎn)$P(2,\sqrt{2})$,一個(gè)焦點(diǎn)F的坐標(biāo)為(2,0).
(1)求橢圓C的方程;
(2)設(shè)直線(xiàn)l:y=kx+m與橢圓C交于A(yíng),B兩點(diǎn),O為坐標(biāo)原點(diǎn),若${k_{OA}}•{k_{OB}}=-\frac{1}{2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù)又在區(qū)間[0,+∞)上單調(diào)遞減的是(  )
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知全集U=R,集合A={x|x2-3x≤0},B={x|a≤x≤a+2,a∈R}.
(1)當(dāng)a=1時(shí),求A∩B;
(2)當(dāng)集合A,B滿(mǎn)足B⊆A時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.根據(jù)浙江省新高考方案,每位考生除語(yǔ)、數(shù)、外3門(mén)必考科目外,有3門(mén)選考科目,并且每門(mén)選考科目都有2次考試機(jī)會(huì),每年有兩次考試時(shí)間,某考生為了取得最好成績(jī),將3門(mén)選考科目共6次考試機(jī)會(huì)安排在高二與高三的4次考試中,且每次至多考2門(mén),則該考生共有114 種不同的考試安排方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=ax3-2x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍為(  )
A.(2,+∞)B.(0,$\frac{\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x.
(1)當(dāng)x∈[0,$\frac{π}{4}$]時(shí),求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,直三棱柱ABC-A1B1C1中,AB=AC=AA1,AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在線(xiàn)段A1B1上運(yùn)動(dòng).
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點(diǎn)P的位置,使直線(xiàn)PN和平面ABC所成的角最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知a<-1,函數(shù)f(x)=|x3-1|+x3+ax(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知存在實(shí)數(shù)m,n(m<n≤1),對(duì)任意t0∈(m,n),總存在兩個(gè)不同的t1,t2∈(1,+∞),
使得f(t0)-2=f(t1)=f(t2),求證:$n-m≤\frac{4}{27}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案