分析 (1)將直線(xiàn)l的參數(shù)方程代入曲線(xiàn)C的普通方程,令判別式等于0解出m;
(2)令判別式大于0解出m的取值范圍,利用關(guān)于系數(shù)的關(guān)系得出|PA|•|PB|關(guān)于m的函數(shù),根據(jù)m的范圍解出.
解答 解:(1)曲線(xiàn)C的直角坐標(biāo)方程為x2+y2=4,
將直線(xiàn)l的參數(shù)方程代入上式得:t2-$\sqrt{2}m$t+m2-4=0,
∵直線(xiàn)l與曲線(xiàn)C有且只有一個(gè)公共點(diǎn),
∴(-$\sqrt{2}$m)2-4(m2-4)=0,解得m=$±2\sqrt{2}$.
(2)∵直線(xiàn)l與曲線(xiàn)C交于相異兩點(diǎn)A,B,
∴(-$\sqrt{2}$m)2-4(m2-4)>0,解得-2$\sqrt{2}$<m<2$\sqrt{2}$.
設(shè)A,B對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1t2=m2-4.
∴|PA|•|PB|=|t1t2|=|m2-4|.
∵-2$\sqrt{2}$<m<2$\sqrt{2}$,∴0<m2<8,∴0≤|m2-4|<4.
∴|PA|•|PB|的取值范圍是[0,4).
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,直線(xiàn)參數(shù)方程的幾何意義與應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A=2,ω=2,φ=$\frac{3π}{4}$ | B. | A=2,ω=2,φ=$\frac{5π}{4}$ | C. | A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$ | D. | A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | $-\frac{5}{2}$ | C. | -2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | -9 | C. | 7 | D. | -7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 14 | C. | 10 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com