若函數(shù)f(x)=loga(4-ax)在[-1,2]上單調(diào)遞減,則正實(shí)數(shù)a的取值范圍是(  )
A、a>2
B、1<a<2
C、
1
4
<a<1,或1<a<2
D、以上都不對
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)0<a<1時(shí),檢驗(yàn)不滿足條件;當(dāng)a>1時(shí),結(jié)合題意可得
a>1
4-a2>0
,由此求得a的范圍.
解答: 解:當(dāng)0<a<1時(shí),由于t=(4-ax)為增函數(shù),故函數(shù)f(x)=loga(4-ax)是增函數(shù),故不滿足題意.
當(dāng)a>1時(shí),由于t=(4-ax)為減函數(shù),故函數(shù)f(x)=loga(4-ax)是減函數(shù),
結(jié)合題意可得
a>1
4-a2>0
,求得1<a<2,
故選:B.
點(diǎn)評:本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓(x-5)2+(y-1)2=r2上有且僅有兩點(diǎn)到直線4x+3y+2=0的距離等于1,則r的取值范圍為( 。
A、[4,6]
B、(4,6)
C、[5,7]
D、(5,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,銳角α和鈍角β的終邊分別于單位圓交于A,B兩點(diǎn),
(1)如果A、B兩點(diǎn)的縱坐標(biāo)分別為
4
5
12
13
,求cos(β-α)的值.
(2)已知點(diǎn)C(-1,
3
),記函數(shù)f(α)=
OA
OC
,求f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中陰影部分表示的集合是( 。
A、∁U(A∩B)
B、∁U(A∪B)
C、A∩(∁UB)
D、(∁UA)∩B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)Z=
2
3-i
+i2012對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<5},B={x|x2-3x+2<0},則CAB=( 。
A、{x|2<x<5}
B、{x|2≤x<5}
C、{x|2≤x≤5}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|f(x)=0},Q={x|g(x)=0},則集合M={x|f(x)g(x)=0}可表示為( 。
A、PB、P∪Q
C、P∩QD、以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,f(x)=
3x
a
+
a
3x
是R上的偶函數(shù).
(1)求a的值;
(2)判斷并證明函數(shù)f(x)在[0,+∞)上的單調(diào)性;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m<n,則
3
4
(n-m)
 
0.(填“>”、“<”或“=”)

查看答案和解析>>

同步練習(xí)冊答案