(10分)設(shè)和分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程
實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(Ⅰ)求方程有實(shí)根的概率;
(Ⅱ)求的分布列和數(shù)學(xué)期望;
(Ⅲ)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率.
(Ⅰ)
(Ⅱ)
(Ⅲ)
【解析】本試題主要考查了古典概型概率的計(jì)算,以及分布列和數(shù)學(xué)期望的求解的綜合運(yùn)用。
(1)中理解本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的基本事件總數(shù)為6×6=36,那么借助于使方程有實(shí)根△=b2-4c≥0,得到事件A發(fā)生的基本事件數(shù),得到概率值。
(2)利用ξ=0,1,2的可能取值,分別得到各個(gè)取值的概率值,然后寫(xiě)出分布列和數(shù)學(xué)期望值
(3)分析在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根,這是一個(gè)條件概率,利用條件概率公式得到結(jié)論。
解:(I)由題意知,本題是一個(gè)等可能事件的概率,
試驗(yàn)發(fā)生包含的基本事件總數(shù)為6×6=36,
滿足條件的事件是使方程有實(shí)根,則△=b2-4c≥0,即.
下面針對(duì)于c的取值進(jìn)行討論
當(dāng)c=1時(shí),b=2,3,4,5,6; 當(dāng)c=2時(shí),b=3,4,5,6;
當(dāng)c=3時(shí),b=4,5,6; 當(dāng)c=4時(shí),b=4,5,6;
當(dāng)c=5時(shí),b=5,6; 當(dāng)c=6時(shí),b=5,6,
目標(biāo)事件個(gè)數(shù)為5+4+3+3+2+2=19,
因此方程有實(shí)根的概率為
(II)由題意知用隨機(jī)變量ξ表示方程實(shí)根的個(gè)數(shù)得到
ξ=0,1,2 根據(jù)第一問(wèn)做出的結(jié)果得到
則,,,
∴ξ的分布列為
∴ξ的數(shù)學(xué)期望
(III)在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根,
這是一個(gè)條件概率,
記“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5”為事件M,
“方程有實(shí)根”為事件N,
則,, ∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
π |
4 |
| ||
2 |
ab |
bc |
ca |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省羅源縣第一中學(xué)高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本題13分)汽車(chē)和自行車(chē)分別從A地和C地同時(shí)開(kāi)出,如下圖,各沿箭頭方向(兩方向垂直)勻速前進(jìn),汽車(chē)和自行車(chē)的速度分別是10米/秒和5米/秒,已知AC=100米。(汽車(chē)開(kāi)到C地即停止)
(1)經(jīng)過(guò)秒后,汽車(chē)到達(dá)B處,自行車(chē)到達(dá)D處,設(shè)B、D間距離為,寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求出定義域。
(2)經(jīng)過(guò)多少時(shí)間后,汽車(chē)和自行車(chē)之間的距離最短?最短距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本題13分)汽車(chē)和自行車(chē)分別從A地和C地同時(shí)開(kāi)出,如下圖,各沿箭頭方向(兩方向垂直)勻速前進(jìn),汽車(chē)和自行車(chē)的速度分別是10米/秒和5米/秒,已知AC=100米。(汽車(chē)開(kāi)到C地即停止)
(1)經(jīng)過(guò)秒后,汽車(chē)到達(dá)B處,自行車(chē)到達(dá)D處,設(shè)B、D間距離為,寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求出定義域。
(2)經(jīng)過(guò)多少時(shí)間后,汽車(chē)和自行車(chē)之間的距離最短?最短距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年大連市高二下學(xué)期六月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分10分) 設(shè)和分別是從1,2,3,4這四個(gè)數(shù)中隨機(jī)選取的數(shù),用隨機(jī)變量X表示方程的實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì))。
(1)求方程有實(shí)根的概率;(2)求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(3)若中至少有一個(gè)為3,求方程有實(shí)根的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省南通市通州區(qū)2010屆高三下學(xué)期查漏補(bǔ)缺專題訓(xùn)練(理) 題型:解答題
(選做題)從A,B,C,D四個(gè)中選做2個(gè),每題10分,共20分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.(本小題為選做題,滿分10分)
如圖,AB是半圓的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD
切半圓于點(diǎn)D,CD=2,DE⊥AB,垂足為E,且E是
OB的中點(diǎn),求BC的長(zhǎng).
B.(本小題為選做題,滿分10分)
已知矩陣,其中,若點(diǎn)P(1,1)在矩陣A的變換下得到點(diǎn),
(1)求實(shí)數(shù)a的值; (2)求矩陣A的特征值及特征向量.
C.(本小題為選做題,滿分10分)
設(shè)點(diǎn)分別是曲線和上的動(dòng)點(diǎn),求動(dòng)點(diǎn)間的最小距離.
D.(本小題為選做題,滿分10分)
設(shè)為正數(shù),證明:≥.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com