已知向量,,,點(diǎn)A、B為函數(shù)的相鄰兩個零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.
(1);(2);(3),.
解析試題分析: (1)由向量的數(shù)量積可得:
.
這個函數(shù)相鄰兩個零點(diǎn)間的距離等于半個周期,再利用求周期的公式可得的值.
(2)由(1)得,則.
這里不能展開來求,而應(yīng)考慮湊角: ,這樣再利用差角的正弦公式就可以求出的值;
(3),這是一個三角函數(shù)與一個一次函數(shù)的差構(gòu)成的函數(shù),故可通過導(dǎo)數(shù)來求它的單調(diào)區(qū)間.
試題解析:(1)
,3分
由,得,則.4分
(2)由(1)得,則.
由,得,6分
.8分
(3),
,
∴ 10分
∴(),
即(),
又,∴在區(qū)間上的單調(diào)遞減區(qū)間為:
,. (12分)
考點(diǎn):1、向量的數(shù)量積;2、三角函數(shù)的周期;3、三角變換;4、導(dǎo)數(shù)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少件時總利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn),直線與函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),記的面積為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)處的切線方程為.
(1)求,的值;
(2)對函數(shù)定義域內(nèi)的任一個實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在上是增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)若,且,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè).
(Ⅰ)若對一切恒成立,求的取值范圍;
(Ⅱ)設(shè),且是曲線上任意兩點(diǎn),若對任意的,直線AB的斜率恒大于常數(shù),求的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若函數(shù)在區(qū)間上的最大值為28,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2 mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時,求函數(shù)f(x)在[1,e]上的最大值和最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com