【題目】一個(gè)體積為12 的正三棱柱的三視圖如圖所示,則這個(gè)三棱柱的側(cè)視圖的面積為(

A.6
B.8
C.8
D.12

【答案】A
【解析】解:設(shè)棱柱的高為h,
由左視圖知,底面正三角形的高是2 ,由正三角形的性質(zhì)知,其邊長(zhǎng)是4,
故底面三角形的面積是 =4
由于其體積為12 ,故有h×4 =12 ,得h=3
由三視圖的定義知,側(cè)視圖的寬即此三棱柱的高,故側(cè)視圖的寬是3,其面積為3×2 =6
故選A
此幾何體是一個(gè)正三棱柱,正視圖即內(nèi)側(cè)面,底面正三角形的高是2 ,由正三角形的性質(zhì)可以求出其邊長(zhǎng),由于本題中體積已知,故可設(shè)出棱柱的高,利用體積公式建立起關(guān)于高的方程求高,再由正方形的面積公式求側(cè)視圖的面積即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出的,那么判斷框中填入的條件可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=ABC=90°,BC=CD=2BE=2,點(diǎn)M是棱AD的中點(diǎn)

(I)證明:平面AED⊥平面ACD;

()求銳二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: (a>b>0)的離心率為 ,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.
(1)求橢圓E的方程;
(2)如圖,設(shè)橢圓E的上、下頂點(diǎn)分別為A1、A2 , P是橢圓上異于A1、A2的任意一點(diǎn),直線PA1、PA2分別交x軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,有下面結(jié)論:

①AC∥平面CB1D1;

②AC1平面CB1D1;

③AC1與底面ABCD所成角的正切值是;

④AD1與BD為異面直線.其中正確的結(jié)論的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中是錯(cuò)誤命題的個(gè)數(shù)有(  )

(1)若命題p為假命題,命題為假命題,則命題“”為假命題;

(2)命題“若,則”的否命題為“若,則”;

(3)對(duì)立事件一定是互斥事件;

(4)為兩個(gè)事件,則P(A∪B)=P(A)+P(B);

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= ,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C及點(diǎn),

過(guò)B作直線l與圓C相交于M,N兩點(diǎn),,求直線l的方程;

在圓C上是否存在點(diǎn)P,使得?若存在,求點(diǎn)P的個(gè)數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m0p(x2)(x6)0,q2mx2m.

(1)pq成立的必要不充分條件求實(shí)數(shù)m的取值范圍;

(2) 成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案