若f(x)為奇函數(shù),當(dāng)x>0時(shí),f(x)=-x2+x,則當(dāng)x<0時(shí),f(x)=( 。
A、-x2-x
B、x2-x
C、x2+x
D、-x2+x
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)x<0時(shí),-x>0,運(yùn)用已知的解析式,再由奇函數(shù)的定義,即可得到所求的解析式.
解答: 解:當(dāng)x<0時(shí),-x>0,則
由當(dāng)x>0時(shí),f(x)=-x2+x,
即有f(-x)=-x2-x,
又f(x)為奇函數(shù),則f(-x)=-f(x),
則有f(x)=x2+x,(x>0).
故選C.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性及運(yùn)用:求解析式,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求下列函數(shù)的定義域:①y=(
1
2
)
1
x
y=
log0.5(4x-3)

(2)解關(guān)于x的不等式:①a2x-7>a4x-1 logx
3
4
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acosB+bcosA=2ctanC,則tan(A+B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)下列各式的(式中字母均為正數(shù))
(1)
b3
a
a6
b6
;
(2)4x
1
4
(-3x
1
4
y
-
1
3
)÷(-6x
-
1
2
y
-
2
3
)
(結(jié)果為分?jǐn)?shù)指數(shù)冪).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-4,3)且在兩坐標(biāo)軸上的截距相等的直線方程為(  )
A、x+y-1=0或3x+4y=0
B、x+y-1=0或3x-4y=0
C、x+y+1=0或3x-4y=0
D、x+y+1=0或3x+4y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后輸出的x值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(λ,λ),
b
=(3λ,1),如果
a
b
的共線,則λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=elnx(e為自然對(duì)數(shù)).對(duì)于函數(shù)f(x)與h(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k、b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.設(shè)h(x)=
1
2
2,試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請(qǐng)給予證明,并求出k、b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“?x∈R,2x-1>0”,命題q:“函數(shù)f(x)=x-
1
x
是奇函數(shù)”,則下列命題正確的是(  )
A、命題“p∧q”是真命題
B、命題“(¬p)∧q”是真命題
C、命題“p∧(¬q)”是真命題
D、命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案