(本小題滿分13分)已知,是二次函數(shù),當時,的最小值為,且為奇函數(shù),求函數(shù)的表達式.
設(shè)f(x)=ax2+bx+c(a≠0)
f(x)+g(x)=(a-1)x2+bx+(c-3)
∵f(x)+g(x)為奇函數(shù)

∴f(x)=x2+bx+3
對稱軸方程x=
10 
ymin=f(-1)=1-b+3=4-b
令4-b=1
∴b=3
20  
yman=f()=
(舍正)
30 
ymin=f(2)=4+2b+3=7+2b
令7+2b="1  " ∴b=-3(舍)
綜上:f(x)=x2+3x+3或f(x)=x2-
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),且實數(shù)>>>0滿足,若實數(shù)是函數(shù)=的一個零點,那么下列不等式中不可能成立的是  ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

心理學家研究某位學生的學習情況發(fā)現(xiàn):若這位學生剛學完的知識存留量記為1,則天后的存留量;若在天時進行第一次復(fù)習,則此時知識存留量比未復(fù)習情況下增加一倍(復(fù)習時間忽略不計),其后存儲量隨時間變化的曲線恰為直線的一部分,其斜率為存留量隨時間變化的曲線如圖所示.當進行第一次復(fù)習后的存留量與不復(fù)習的存留量相差最大時,則稱此時此刻為“二次復(fù)習最佳時機點”.
(1)若,求“二次最佳時機點”;
(2)若出現(xiàn)了“二次復(fù)習最佳時機點”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.函數(shù)在定義域內(nèi)的零點的個數(shù)為(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法不正確的是(    )
A.方程有實根函數(shù)有零點
B.有兩個不同實根
C.上滿足,則內(nèi)有零點
D.單調(diào)函數(shù)的零點至多有一個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的一個零點比1大,另一個零點比1小,則實數(shù)的取值范圍是      ▲     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)若直線l1交函數(shù)f(x)的圖象于P,Q兩點,與l1平行的直線與函數(shù)的圖象切于點R,求證 P,R,Q三點的橫坐標成等差數(shù)列;
(II)若不等式恒成立,求實數(shù)a的取值范圍;
(III)求證:〔其中, e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),且定義域為(0,2).
(1)求關(guān)于x的方程+3在(0,2)上的解;
(2)若是定義域(0,2)上的單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)若關(guān)于x的方程在(0,2)上有兩個不同的解,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的零點位于區(qū)間      (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案