分析 (I)由2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比數(shù)列,可得$({2}^{{a}_{n+1}})^{2}$=2${\;}^{{a}_{n}}$•2${\;}^{{a}_{n+2}}$,可得2an+1=an+an+2.利用等差數(shù)列的通項(xiàng)公式可得an.
(II)利用“錯(cuò)位相減法”、等差數(shù)列等比數(shù)列的求和公式即可得出.
解答 解:(I)∵2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比數(shù)列,∴$({2}^{{a}_{n+1}})^{2}$=2${\;}^{{a}_{n}}$•2${\;}^{{a}_{n+2}}$,∴2an+1=an+an+2.
∴數(shù)列{an}為等差數(shù)列,設(shè)公差為d,∵a3=5,a5+a6=20,
∴a1+2d=5,2a1+9d=20,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)bn=an-(-1)nn=(2n-1)-(-1)nn.
設(shè)數(shù)列{(-1)nn}的前n項(xiàng)和為Sn,
則Sn=-1+2-3+…+(-1)nn.
∴-Sn=1-2+3+…+(-1)n(n-1)+(-1)n+1n,
∴2Sn=-1+1-1+…+(-1)n-(-1)n+1n=$\frac{-[1-(-1)^{n}]}{1-(-1)}$-(-1)n+1n,
∴Sn=$\frac{(-1)^{n}-1}{4}$+$\frac{(-1)^{n}n}{2}$.
∴Tn=$\frac{n(1+2n-1)}{2}$-$\frac{(-1)^{n}-1}{4}$-$\frac{(-1)^{n}n}{2}$=n2-$\frac{(-1)^{n}-1}{4}$-$\frac{(-1)^{n}n}{2}$.
∴T21=212-$\frac{-2}{4}$-$\frac{-21}{2}$=452.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=-sin2x | B. | f(x)的圖象關(guān)于x=-$\frac{π}{3}$對(duì)稱 | ||
C. | f($\frac{7π}{3}$)=$\frac{1}{2}$ | D. | f(x)的圖象關(guān)于($\frac{π}{12}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{11}{16}$ | C. | $\frac{5}{8}$ | D. | $\frac{5}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12+3π | B. | 10+3π | C. | 12+4π | D. | 10+4π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com