如圖,四棱錐P-ABCD中,O是底面正方形ABCD的中心,側(cè)棱PD⊥底面ABCD,E是PC的中點(diǎn).
(1)證明:PA∥EO;
(2)證明:DE⊥平面PBC.
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(Ⅰ)以D為原點(diǎn),DA為x軸,DC為y軸,建立空間直角坐標(biāo)系,利用向量法能證明PA∥平面EDB.
(Ⅱ)求
BC
=(-1,0,0),
PC
=(0,1,-1),
DE
=(0,
1
2
,
1
2
),利用向量法能證明DE⊥平面PBC.
解答: (Ⅰ)證明:以D為原點(diǎn),DA為x軸,DC為y軸,建立空間直角坐標(biāo)系,
連結(jié)AC,則AC交BD于點(diǎn)O,
連結(jié)EG,依題意得A(1,0,0),P(0,0,1),E(0,
1
2
1
2
),
∵底面ABCD是正方形,∴O是正方形ABCD的中點(diǎn),∴O(
1
2
,
1
2
,0),
PA
=(1,0,-1),
EO
=(
1
2
,0,-
1
2
),
PA
=2
EO
,即PA∥EG,
∴PA∥EO.
(Ⅱ)證明:依題意B(1,1,0),C(0,1,0),
BC
=(-1,0,0),
PC
=(0,1,-1),
DE
=(0,
1
2
,
1
2
),
BC
DE
=0
,
PC
DE
=0+
1
2
-
1
2
=0

∴BC⊥DE,PC⊥DE,
又BC∩PC=C,
∴DE⊥平面PBC.
點(diǎn)評:本題考查線面平行的判定,線面垂直的判定,考查二面角的平面角的余弦值的求法,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)A(-3,-4),B(6,3)到直線l:ax+y+1=0的距離相等,則實數(shù)a的值為(  )
A、
7
9
B、-
1
3
C、
7
9
1
3
D、-
7
9
或-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

五名學(xué)生投籃球,規(guī)定每人投20次,統(tǒng)計他們每人投中的次數(shù),得到五個數(shù)據(jù),若這五個數(shù)據(jù)的中位數(shù)是6,唯一眾數(shù)是7,則下列所給數(shù)據(jù)可能是他們投中次數(shù)總和的為(  )
A、20B、28C、30D、31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{n}(n∈N*),依次按第1個括號一個數(shù),第2個括號兩個數(shù),第3個括號三個數(shù),第4個括號四個數(shù),第5個括號一個數(shù),…,循環(huán)為(1),(2,3),(4,5,6),(7,8,9,10),(11),(12,13),(14,15,16),(17,18,19,20),(21),…,則第2012個括號內(nèi)各數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+1
-ax(a>0),求a的取值范圍,使函數(shù)f(x)在(0,+∞)上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx+
1
3
x的零點(diǎn)所在的區(qū)間是( 。
A、(1,+∞)
B、(
1
e
,1)
C、(0,
1
e
)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋擲一枚質(zhì)地均勻的硬幣,正面朝上的概率為0.5,現(xiàn)采用隨機(jī)模擬試驗的方法估計拋擲這枚硬幣三次恰有兩次正面朝上的概率;先由計算器產(chǎn)生0或1的隨機(jī)數(shù),用0表示正面朝上,用1表示反面朝上;再以每三個隨機(jī)數(shù)做為一組,代表這三次投擲的結(jié)果,經(jīng)隨機(jī)模擬試驗產(chǎn)生了如下20組隨機(jī)數(shù):
101  111  010  101  010  100  100  011  111  110
000  011  010  001  111  011  100  000  101  101
據(jù)此估計,拋擲這枚硬幣三次恰有兩次正面朝上的概率為( 。
A、0.30B、0.35
C、0.40D、0.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+2x-4y=0,那么圓心坐標(biāo)是
 
;如果圓C的弦AB的中點(diǎn)坐標(biāo)是(-2,3),那么弦AB所在的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
(m為正的常數(shù)),它在(0,+∞)內(nèi)的單調(diào)變化是:在(0,
m
]
內(nèi)遞減,在[
m
,+∞)
內(nèi)遞增.其第一象限內(nèi)的圖象形如一個“對號”.請使用這一性質(zhì)完成下面的問題.
(1)若函數(shù)g(x)=2x+
a
x
在(0,1]內(nèi)為減函數(shù),求正數(shù)a的取值范圍;
(2)若圓C:x2+y2-2x-2y+1=0與直線l:y=kx相交于P、Q兩點(diǎn),點(diǎn)M(0,b)且MP⊥MQ.求當(dāng)b∈[1,+∞)時,k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案