20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點(diǎn)分別為A1、A2,M是雙曲線上異于A1、A2的任意一點(diǎn),直線MA1和MA2分別與y軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OP|,|OM|,|OQ|依次成等比數(shù)列,則雙曲線的離心率的取值范圍是( 。
A.$({\sqrt{2},+∞})$B.$[{\sqrt{2},+∞})$C.$({1,\sqrt{2}})$D.$({1,\sqrt{2}}]$

分析 設(shè)M(x0,y0),P(0,yp),Q(0,yq),通過M,P,Q三點(diǎn)共線,求出yp,yq,利用等比數(shù)列求出b的范圍,然后求解離心率即可.

解答 解:設(shè)M(x0,y0),P(0,yp),Q(0,yq),
由M,P,Q三點(diǎn)共線,可知yp=$\frac{a{y}_{0}}{{x}_{0}+a}$,同理yq=$\frac{-a{y}_{0}}{{x}_{0}-a}$,
所以|OP||OQ|=$\frac{{a}^{2}{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=^{2}$,從而|OM|=b,當(dāng)b>a時(shí),滿足題意,所以e$>\sqrt{2}$.
故選:A.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,等比數(shù)列的性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-1+aex
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時(shí),曲線y=f(x)與直線y=kx-1沒有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\left\{\begin{array}{l}-({x+1})•{e^x},x≤a\\-2x-1,x>a\end{array}$有最大值,則實(shí)數(shù)a的取值范圍是( 。
A.$[{-\frac{1}{2}-\frac{1}{{2{e^2}}},+∞})$B.$[{-\frac{1}{{2{e^2}}},+∞})$C.[-2,+∞)D.$({-2,-\frac{1}{2}-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=4(an-1),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若數(shù)列{bn}滿足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,則z=2x-y的最大值為(  )
A.-8B.-6C.-2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果x0是函數(shù)f(x)的一個(gè)零點(diǎn),且在這個(gè)零點(diǎn)兩側(cè)函數(shù)值異號,則稱x0是函數(shù)f(x)的一個(gè)變號零點(diǎn),已知函數(shù)f(x)=ax2+1+lnx在($\frac{1}{e}$,e)上有且僅有一個(gè)變號零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.[-$\frac{2}{{e}^{2}}$,0)B.[-$\frac{2}{{e}^{2}}$,0)∪{$-\frac{1}{2}$e}C.[-$\frac{e}{2}$,0)D.[-$\frac{2}{{e}^{2}}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過點(diǎn)P(-1,1)作圓C:(x-t)2+(y-t)2=1(t∈R)的切線,切點(diǎn)分別為A,B,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面給出的命題中:
(1)已知函數(shù)f(a)=${∫}_{0}^{a}$cos xdx,則f($\frac{π}{2}$)=1;
(2)“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0互相垂直”的必要不充分條件;
(3)已知隨機(jī)變量ξ服從正態(tài)分布N(0,δ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2;
(4)已知圓C1:x2+y2+2x=0,圓C2:x2+y2-1=0,則這兩個(gè)圓恰有兩條公切線.
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值和方差(不要求計(jì)算出具體值,得出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此樣本分析你是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān).
  認(rèn)可 不認(rèn)可 合計(jì)
 A城市   
 B城市   
 合計(jì)   
P(Χ2≥k)0.050.010
k3.8416.635
(參考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
(Ⅲ)在A和B兩個(gè)城市滿意度在90分以上的用戶中任取2戶,求來自不同城市的概率.

查看答案和解析>>

同步練習(xí)冊答案