12.過點(diǎn)P(-1,1)作圓C:(x-t)2+(y-t)2=1(t∈R)的切線,切點(diǎn)分別為A,B,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為0.

分析 根據(jù)直線與圓相切的性質(zhì)可求PA=PB,及∠APB,利用∠APB的最大值為90°,可求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

解答 解:圓C:(x-t)2+(y-t)2=1的圓心坐標(biāo)為(t,t),半徑為1,
∴圓心在直線y=x上,
點(diǎn)P(-1,1)到直線的距離d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,PA=PB=1,
∴∠APB的最大值為90°,
∴$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為0.
故答案為0

點(diǎn)評(píng) 本題主要考查了圓的切線性質(zhì)的應(yīng)用及平面向量的數(shù)量積的定義的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:t=$\frac{π}{2}$,命題q:${∫}_{0}^{t}$sinxdx=1,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是首項(xiàng)${a_1}=\frac{1}{3}$,公比$q=\frac{1}{3}$的等比數(shù)列.設(shè)${b_n}=2{log_{\frac{1}{3}}}{a_n}-1$(n∈N*).
(Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設(shè)cn=an+b2n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點(diǎn)分別為A1、A2,M是雙曲線上異于A1、A2的任意一點(diǎn),直線MA1和MA2分別與y軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OP|,|OM|,|OQ|依次成等比數(shù)列,則雙曲線的離心率的取值范圍是( 。
A.$({\sqrt{2},+∞})$B.$[{\sqrt{2},+∞})$C.$({1,\sqrt{2}})$D.$({1,\sqrt{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)(1+i)z=1-i(i是虛數(shù)單位),則z的共軛復(fù)數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知i為虛數(shù)單位,a∈R,$\frac{a-\sqrt{2}+i}{i}$為實(shí)數(shù),則復(fù)數(shù)z=2a+$\sqrt{2}$i的模等于( 。
A.$\sqrt{6}$B.$\sqrt{10}$C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>0,b>0,則“l(fā)og2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=(x-2)n,其中$n=4\int_{-π}^{2π}{sin({x+π})dx}$,則f(x)的展開式中含x6的項(xiàng)的系數(shù)為( 。
A.-112B.-56C.112D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},則M∩N=( 。
A.{x|-1<x≤$\frac{1}{3}$}B.{x|x≥$\frac{1}{3}$}C.{x|x≤$\frac{1}{3}$}D.{x|$\frac{1}{3}$≤x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案