分析 根據(jù)直線與圓相切的性質(zhì)可求PA=PB,及∠APB,利用∠APB的最大值為90°,可求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.
解答 解:圓C:(x-t)2+(y-t)2=1的圓心坐標(biāo)為(t,t),半徑為1,
∴圓心在直線y=x上,
點(diǎn)P(-1,1)到直線的距離d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,PA=PB=1,
∴∠APB的最大值為90°,
∴$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為0.
故答案為0
點(diǎn)評(píng) 本題主要考查了圓的切線性質(zhì)的應(yīng)用及平面向量的數(shù)量積的定義的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\sqrt{2},+∞})$ | B. | $[{\sqrt{2},+∞})$ | C. | $({1,\sqrt{2}})$ | D. | $({1,\sqrt{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | 1 | C. | -i | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{10}$ | C. | $\sqrt{11}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -112 | B. | -56 | C. | 112 | D. | 56 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1<x≤$\frac{1}{3}$} | B. | {x|x≥$\frac{1}{3}$} | C. | {x|x≤$\frac{1}{3}$} | D. | {x|$\frac{1}{3}$≤x<1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com