2.已知命題p:t=$\frac{π}{2}$,命題q:${∫}_{0}^{t}$sinxdx=1,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 求出關(guān)于命題q的t的范圍,根據(jù)集合的包含關(guān)系判斷即可.

解答 解:由${∫}_{0}^{t}$sinxdx=1,
得-cosx${|}_{0}^{t}$=-(cost-cos0)=1-cost=1,
故cost=0,t=kπ+$\frac{π}{2}$,
故命題q:t=kπ+$\frac{π}{2}$,k∈Z.
而命題p:t=$\frac{π}{2}$,
則p是q的充分不必要條件,
故選:A.

點評 本題考查了集合的包含關(guān)系,考查定積分求值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合M={x|y=ln$\frac{x-1}{x}$},N={y|y=x2+2x+2},則M=(-∞,0)∪(1,+∞),(∁RM)∩N={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是純虛數(shù),則實數(shù)b的值為(  )
A.0B.$\frac{8}{15}$C.$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-1+aex
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時,曲線y=f(x)與直線y=kx-1沒有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某早餐店每天制作甲、乙兩種口味的糕點共n(n∈N*)份,每份糕點的成本1元,售價2元,如果當(dāng)天賣不完,剩下的糕點作廢品處理,該早餐店發(fā)現(xiàn)這兩種糕點每天都有剩余,為此整理了過往100天這兩種糕點的日銷量(單位:份),得到如下統(tǒng)計數(shù)據(jù):
 甲口味糕點日銷量 48 49 50 51
 天數(shù) 20 40 20 20
 乙口味糕點日銷量 48 49 50 51
 天數(shù) 40 30 20 10
以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種糕點的日銷量相互獨立.
(1)記該店這兩種糕點每日的總銷量為X份,求X的分布列;
(2)早餐店為了減少浪費,提升利潤,決定調(diào)整每天制作糕點的份數(shù).
①若產(chǎn)生浪費的概率不超過0.6,求n的最大值;
②以銷售這兩種糕點的日總利潤的期望值為決策依據(jù),在每天所制糕點能全部賣完與n=98之中選其一,應(yīng)選哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知(1+x)n的展開式中第5項與第7項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為( 。
A.29B.210C.211D.212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x,y滿足$\left\{\begin{array}{l}{x+y≥0}\\{x≥1}\\{x-y≥0}\end{array}\right.$,則下列不等式恒成立的是( 。
A.y≥0B.x≥2C.2x-y+1≥0D.x+2y+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\left\{\begin{array}{l}-({x+1})•{e^x},x≤a\\-2x-1,x>a\end{array}$有最大值,則實數(shù)a的取值范圍是( 。
A.$[{-\frac{1}{2}-\frac{1}{{2{e^2}}},+∞})$B.$[{-\frac{1}{{2{e^2}}},+∞})$C.[-2,+∞)D.$({-2,-\frac{1}{2}-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過點P(-1,1)作圓C:(x-t)2+(y-t)2=1(t∈R)的切線,切點分別為A,B,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為0.

查看答案和解析>>

同步練習(xí)冊答案