2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},則M∩N=(  )
A.{x|-1<x≤$\frac{1}{3}$}B.{x|x≥$\frac{1}{3}$}C.{x|x≤$\frac{1}{3}$}D.{x|$\frac{1}{3}$≤x<1}

分析 分別求出關(guān)于M、N的不等式,求出M、N的交集即可.

解答 解:M={x|y=$\sqrt{1-3x}$}={x|x≤$\frac{1}{3}$},
集合N={x|x2-1<0}={x|-1<x<1},
則M∩N={x|-1<x≤$\frac{1}{3}$},
故選:A.

點評 本題考查了集合的運算,二次根式的性質(zhì)以及解不等式問題,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過點P(-1,1)作圓C:(x-t)2+(y-t)2=1(t∈R)的切線,切點分別為A,B,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知定直線l:y=x+3,定點A(2,1),以坐標(biāo)軸為對稱軸的橢圓C過點A且與l相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)橢圓的弦AP,AQ的中點分別為M,N,若MN平行于l,則OM,ON斜率之和是否為定值?若是定值,請求出該定值;若不是定值請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值和方差(不要求計算出具體值,得出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此樣本分析你是否有95%的把握認為城市擁堵與認可共享單車有關(guān).
  認可 不認可 合計
 A城市   
 B城市   
 合計   
P(Χ2≥k)0.050.010
k3.8416.635
(參考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
(Ⅲ)在A和B兩個城市滿意度在90分以上的用戶中任取2戶,求來自不同城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為選拔選手參加“中國漢字聽寫大全”,某中學(xué)舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分數(shù)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機抽取2名學(xué)生參加“中國漢字聽寫大會”,每次抽取1人,求在第1次抽取的成績低于90分的前提下,第2次抽取的成績?nèi)缘陀?0分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p1:若sinx≠0,則sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要條件是$\frac{x}{y}$=-1,則下列命題為真命題的是( 。
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知角α的頂點與坐標(biāo)原點重合,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(1,-2),則sin2α=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=2xex的一個原函數(shù)為( 。
A.2xex(1+ln2)B.$\frac{{2}^{x}{e}^{x}}{(1+ln2)}$C.2exln2D.$\frac{2{e}^{x}}{ln2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BCE,BE⊥CE,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點.
(I)求證:GF∥平面ADE;
(II)求GF與平面ABE所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案