17.為選拔選手參加“中國漢字聽寫大全”,某中學舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生參加“中國漢字聽寫大會”,每次抽取1人,求在第1次抽取的成績低于90分的前提下,第2次抽取的成績?nèi)缘陀?0分的概率.

分析 (Ⅰ)由樣本容量和頻數(shù)頻率的關系易得答案;
(Ⅱ)由題意可知,分數(shù)在[80,90)內(nèi)的學生有:0.010×10×50=5人,分數(shù)在[90,100)內(nèi)的學生有2人,利用條件概率公式可得結(jié)論.

解答 解:(Ⅰ)由題意可知,樣本容量$n=\frac{8}{0.016×10}=50$,$y=\frac{2}{50×10}=0.004$,
x=0.100-0.004-0.010-0.016-0.040=0.030.
(Ⅱ)由題意可知,分數(shù)在[80,90)內(nèi)的學生有:0.010×10×50=5人,分數(shù)在[90,100)內(nèi)的學生有2人;
設A={第1次抽取的成績低于90分},B={第2次抽取的成績?nèi)缘陀?0分},
則$P(A)=\frac{5}{7}$,$P({AB})=\frac{5×4}{7×6}=\frac{10}{21}$,
∴$P({B|A})=\frac{{P({AB})}}{P(A)}=\frac{2}{3}$.

點評 本題考查求條件概率,涉及頻率分布直方圖,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知復數(shù)(1+i)z=1-i(i是虛數(shù)單位),則z的共軛復數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=ln(1+x)-ln(1-x),給出以下四個命題:
①?x∈(-1,1),有f(-x)=-f(x);
②?x1,x2∈(-1,1)且x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;
③?x1,x2∈(0,1),有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$;
④?x∈(-1,1),|f(x)|≥2|x|.
其中所有真命題的序號是(  )
A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}是等差數(shù)列且滿足a1=1,a3=7,設Sn為數(shù)列{(-1)nan}的前n項和,則S2017為(  )
A.-3025B.-3024C.2017D.9703

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{2}}}{2}$,且與直線l:y=x+3相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓上點A(2,1)作橢圓的弦AP,AQ,若AP,AQ的中點分別為M,N,若MN平行于l,則OM,ON斜率之和是否為定值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},則M∩N=(  )
A.{x|-1<x≤$\frac{1}{3}$}B.{x|x≥$\frac{1}{3}$}C.{x|x≤$\frac{1}{3}$}D.{x|$\frac{1}{3}$≤x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知中心在原點的雙曲線,其右焦點與圓x2-4x+y2+1=0的圓心重合,且漸近線與該圓相離,則雙曲線離心率的取值范圍是( 。
A.(1,$\frac{2\sqrt{3}}{3}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,試證:|${\frac{1}{3}$m-$\frac{1}{2}$n|≤$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)左焦點F1的直線交雙曲線左支于A,B兩點,C是雙曲線右支上一點,且A,C在x軸的異側(cè),若滿足|OA|=|OF1|=|OC|,|CF1|=2|BF1|,則雙曲線的離心率為$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

同步練習冊答案