分析 (Ⅰ)由離心率可得 a2=2b2,橢圓C與直線l相切,由$\left\{\begin{array}{l}y=x+3\\ \frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1\end{array}\right.$,得3x2+12x+18-2b2=0,△=144-4×3(18-2b2)=0,得b2=3,a2=6,可得橢圓方程
(Ⅱ)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),可知PQ∥MN,所以kPQ=kMN=1,
設(shè)直線PQ的方程為y=x+t,代入橢圓方程并化簡(jiǎn)得:3x2+4tx+2t2-6=0
由題意可知$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{4t}{3}\\{x_1}{x_2}=\frac{{2{t^2}-6}}{3}\end{array}\right.$,利用韋達(dá)定理可計(jì)算${k_{OM}}+{k_{ON}}=\frac{{2(2{t^2}-6)+(t+3)(-4t)+12t+12}}{{3{x_1}{x_2}+6({x_1}+{x_2})+12}}=\frac{0}{{3{x_1}{x_2}+6({x_1}+{x_2})+12}}=0$.
解答 解:(Ⅰ)∵$e=\frac{{\sqrt{2}}}{2}$,∴$\frac{b^2}{a^2}=\frac{{{a^2}-{c^2}}}{a^2}=1-{e^2}=\frac{1}{2}$,
即a2=2b2(2分)
由$\left\{\begin{array}{l}y=x+3\\ \frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1\end{array}\right.$,得3x2+12x+18-2b2=0,
△=144-4×3(18-2b2)=0,(4分)
得b2=3,a2=6,所以橢圓方程為$\frac{x^2}{6}+\frac{y^2}{3}=1$.(5分)
(Ⅱ)設(shè)直線PQ的方程y=x+t,聯(lián)立方程組$\left\{\begin{array}{l}y=x+t\\ \frac{x^2}{6}+\frac{y^2}{3}=1\end{array}\right.$
得3x2+4tx+2t2-6=0的兩根為P(x1,y1),Q(x2,y2),(7分)
由題意得$M(\frac{{{x_1}+2}}{2},\frac{{{y_1}+1}}{2})$,$N(\frac{{{x_2}+2}}{2},\frac{{{y_2}+1}}{2})$,
由題意可知PQ∥MN,所以kPQ=kMN=1,(8分)
${x_1}+{x_2}=-\frac{4t}{3}$,${x_1}{x_2}=\frac{{2{t^2}-6}}{3}$,
${k_{OM}}+{k_{ON}}=\frac{{{y_1}+1}}{{{x_1}+2}}+\frac{{{y_2}+1}}{{{x_2}+2}}=\frac{{{x_1}+t+1}}{{{x_1}+2}}+\frac{{{x_2}+t+1}}{{{x_2}+2}}$
=$\frac{{2{x_1}{x_2}+(t+1+2)({x_1}+{x_2})+4(t+1)}}{{({x_1}+2)({x_2}+2)}}$
=$\frac{{2\frac{{2{t^2}-6}}{3}+(t+1+2)\frac{-4t}{3}+4(t+1)}}{{({x_1}+2)({x_2}+2)}}=0$,
所以O(shè)M,ON斜率之和是為定值0.(12分)
點(diǎn)評(píng) 本題考查了橢圓的方程,橢圓與直線的位置關(guān)系,定值問題的處理方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $2\sqrt{5}$ | C. | $\sqrt{13}$ | D. | $2\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m+n=0 | B. | m-n=0 | C. | mn+1=0 | D. | mn-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 1 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com