7.已知函數(shù)f(x)=lnx+x,則曲線f(x)在點P(1,f(1))處的切線與兩坐標(biāo)軸圍成的三角形的面積為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 根據(jù)求導(dǎo)公式求出函數(shù)的導(dǎo)數(shù),把x=1代入求出切線的斜率,代入點斜式方程并化簡,分別令x=0和y=0求出切線與坐標(biāo)軸的交點坐標(biāo),再代入面積公式求解.

解答 解:由題意得y′=$\frac{1}{x}$+1,則在點M(1,1)處的切線斜率k=2,
故切線方程為:y-1=2(x-1),即y=2x-1,
令x=0得,y=-1;令y=0得,x=$\frac{1}{2}$,
∴切線與坐標(biāo)軸圍成三角形的面積S=$\frac{1}{2}×1×\frac{1}{2}$=$\frac{1}{4}$,
故選:A.

點評 本題考查導(dǎo)數(shù)知識的運用,考查三角形面積的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=ex-ax2,g(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)求g(x)的極值;
(Ⅱ)若f(x)≥x+1在x≥0時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.各項均不為零的等差數(shù)列{an}的前n項和為Sn,則$\frac{{S}_{5}}{{a}_{3}}$的值是( 。
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某顏料公司生產(chǎn)A、B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸;生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸、160噸、200噸.如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為(  )
A.14000元B.16000元C.18000元D.20000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于函數(shù)f(x)=asinx+bx3+cx+1(a,b,c∈R),選取a,b,c的一組值計算f(1)、f(-1),所得出的正確結(jié)果可能是( 。
A.2和1B.2和0C.2和-1D.2和-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我們知道:在長方形ABCD中,如果設(shè)AB=a,BC=b,那么長方形ABCD的外接圓的半徑R滿足:4R2=a2+b2,類比上述結(jié)論回答:在長方體ABCD-A1B1C1D1中,如果設(shè)AB=a,AD=b,AA1=c,那么長方體ABCD-A1B1C1D1的外接球的半徑R滿足的關(guān)系式是4R2=a2+b2+c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{an}的前項和為Sn,且${a_1}=\frac{2}{3},{a_{n+1}}-{S_n}=\frac{2}{3}$,用[x]表示不超過x的最大整數(shù),如[-0.1]=-1,[1.6]=1,設(shè)bn=[an],則數(shù)列{bn}的前2n項和b1+b2+b3+b4+…+b2n-1+b2n=$\frac{{2}^{2n+1}}{3}$-n-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=e-x+ax(a∈R)
(1)討論f(x)的最值;
(2)若a=0,求證:f(x)>-$\frac{1}{2}$x2+$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x|+|x-3|.
(1)求不等式f($\frac{x}{2}$)<6的解集;
(2)若k>0且直線y=kx+5k與函數(shù)f(x)的圖象可以圍成一個三角形,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案