已知函數(shù),
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),當(dāng)(是自然常數(shù))時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
(3)當(dāng)時(shí),證明:.
(1);(2)詳見解析;(3)詳見解析.
解析試題分析:(1)先對(duì)函數(shù)進(jìn)行求導(dǎo),根據(jù)函數(shù)h(x)在[2,3]上是減函數(shù),可得到其導(dǎo)函數(shù)在[2,3]上小于等于0應(yīng)該恒成立,再結(jié)合二次函數(shù)的性質(zhì)可求得a的范圍;(2)先假設(shè)存在,然后對(duì)函數(shù)g(x)進(jìn)行求導(dǎo),再對(duì)a的值分情況討論函數(shù)g(x)在(0,e]上的單調(diào)性和最小值取得,可知當(dāng)a=e2能夠保證當(dāng)x∈(0,e]時(shí)g(x)有最小值3;(3)結(jié)合(2)知的最小值為3,只須證明即可,令,則在上單調(diào)遞增,∴的最大值為 故,即得證.
解:(1)令,則,
(1分))∵在上是減函數(shù),
∴在上恒成立,即在上恒成立 (2分)
而在上是減函數(shù),∴的最小值為
(4分)
(2)假設(shè)存在實(shí)數(shù),使有最小值是3,∵,
若,則,∴在上為減函數(shù),的最小值為
∴與矛盾, (5分)
若時(shí),令,則
當(dāng),即,在上單調(diào)遞減,在上單調(diào)遞增
,解得 (7分)
當(dāng),即時(shí),在上單調(diào)遞減
∴與矛盾, (9分)
(3)∵,由整理得, (10分)
而由(2)知 的最小值為3,只須證明即可 (11分))
令,則在上單調(diào)遞增,
∴的最大值為(12分)
故,即 (14分)
( 接11分處另解, 即證,即證,
令,則,求得從而得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)a=1時(shí),求曲線在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的值;
(3)若對(duì)任意,且恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中),為f(x)的導(dǎo)函數(shù).
(1)求證:曲線y=在點(diǎn)(1,)處的切線不過點(diǎn)(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對(duì)任意,恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•重慶)設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求曲線在處的切線方程;
(2)若是的一個(gè)極值點(diǎn),且點(diǎn),滿足條件:.
(。┣的值;
(ⅱ)求證:點(diǎn),,是三個(gè)不同的點(diǎn),且構(gòu)成直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-3x2+2x
(1)在處的切線平行于直線,求點(diǎn)的坐標(biāo);
(2)求過原點(diǎn)的切線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com