分析 (1)由4Sn=(an+1)2,可得:n=1時(shí),4a1=$({a}_{1}+1)^{2}$,a1>0,解得a1=1.n≥2時(shí),4an=4(Sn-Sn-1),化為:(an+an-1)(an-an-1-2)=0,
由于an+an-1>0,可得an-an-1=2,利用等差數(shù)列的通項(xiàng)公式即可得出an,代入4Sn=(an+1)2,可得:Sn=n2.
(2)bn=(-1)n•Sn=(-1)n•n2.利用“分組求和”、等差數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵4Sn=(an+1)2,∴n=1時(shí),4a1=$({a}_{1}+1)^{2}$,a1>0,解得a1=1.
n≥2時(shí),4an=4(Sn-Sn-1)=$({a}_{n}+1)^{2}$-$({a}_{n-1}+1)^{2}$,化為:(an+an-1)(an-an-1-2)=0,
∵an+an-1>0,∴an-an-1=2,
∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為2,∴an=1+2(n-1)=2n-1.
(2)an=2n-1代入4Sn=(an+1)2,可得:Sn=n2.
bn=(-1)n•Sn=(-1)n•n2.
∴T10=b1+b2+b3+…b10=(22-12)+(42-32)+…+(102-92)
=1+2+…+10=$\frac{10×(1+10)}{2}$=55.
點(diǎn)評(píng) 本題考查了“分組求和”方法、等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α⊥β,a?α,則a⊥β | B. | 若α⊥β,a⊥β,則a∥α | C. | 若a?α,a∥β,則α∥β | D. | 若a?α,a⊥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p∨q | B. | p∧q | C. | ¬p∧q | D. | ¬p∨¬q |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com