【題目】某公司打算引進一臺設備使用一年,現(xiàn)有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.
維修次數(shù) | 2 | 3 | 4 | 5 | 6 |
甲設備 | 5 | 10 | 30 | 5 | 0 |
乙設備 | 0 | 5 | 15 | 15 | 15 |
(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和,求和的分布列;
(2)若以數(shù)學期望為決策依據(jù),希望設備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設備?請說明理由.
【答案】(1)分布列見解析,分布列見解析;(2)甲設備,理由見解析
【解析】
(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算概率得到分布列;
(2)計算期望,得到,設甲、乙兩設備一年內(nèi)的維修次數(shù)分別為,,計算分布列,計算數(shù)學期望得到答案.
(1)的可能取值為10000,11000,12000
,,
因此的分布如下
10000 | 11000 | 12000 | |
的可能取值為9000,10000,11000,12000
,,,
因此的分布列為如下
9000 | 10000 | 11000 | 12000 | |
(2)
設甲、乙兩設備一年內(nèi)的維修次數(shù)分別為,
的可能取值為2,3,4,5
,,,
則的分布列為
2 | 3 | 4 | 5 | |
的可能取值為3,4,5,6
,,,
則的分布列為
3 | 4 | 5 | 6 | |
由于,,因此需購買甲設備
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且點在函數(shù)的圖像上;
(1)求數(shù)列的通項公式;
(2)設數(shù)列滿足:,,求的通項公式;
(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在位于城市A南偏西相距100海里的B處,一股臺風沿著正東方向襲來,風速為120海里/小時,臺風影響的半徑為海里
(1)若,求臺風影響城市A持續(xù)的時間(精確到1分鐘)?
(2)若臺風影響城市A持續(xù)的時間不超過1小時,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點的坐標分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點的軌跡方程;
(2)設直線方程為,直線方程為,直線交于,點,關于軸對稱,直線與軸相交于點.若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、、…、為平面內(nèi)的個點,在平面內(nèi)的所有點中,若點到、、…、點的距離之和最小,則稱點為、、…、點的一個“中位點”,有下列命題:①、、三個點共線,在線段上,則是、、的中位點;②直角三角形斜邊的中點是該直線三角形三個頂點的中位點;③若四個點、、、共線,則它們的中位點存在且唯一;④梯形對角線的交點是該梯形四個頂點的唯一中位點;其中的真命題是( )
A.②④B.①②C.①④D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關關系,求產(chǎn)品銷量(百件)關于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中的估計值分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.設m為實數(shù),若方程表示雙曲線,則m>2.
B.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
C.命題“x∈R,使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3>0”
D.命題“若x0為y=f(x)的極值點,則f’(x)=0”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為確定下一年度投入某種產(chǎn)品的生產(chǎn)所需的資金,需了解每投入2千萬資金后,工人人數(shù)(單位:百人)對年產(chǎn)能(單位:千萬元)的影響,對投入的人力和年產(chǎn)能的數(shù)據(jù)作了初步處理,得到散點圖和統(tǒng)計量表.
(1)根據(jù)散點圖判斷:與哪一個適宜作為年產(chǎn)能關于投入的人力的回歸方程類型?并說明理由?
(2)根據(jù)(1)的判斷結果及相關的計算數(shù)據(jù),建立關于的回歸方程;
(3)現(xiàn)該企業(yè)共有2000名生產(chǎn)工人,資金非常充足,為了使得年產(chǎn)能達到最大值,則下一年度共需投入多少資金(單位:千萬元)?
附注:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,(說明:的導函數(shù)為)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動:對首次參加體檢的人員,按200元/次收費,并注冊成為會員,對會員的后續(xù)體檢給予相應優(yōu)惠(本次即第一次),標準如下:
體檢次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
該體檢中心從所有會員中隨機選取了100位對他們在本中心參加體檢的次數(shù)進行統(tǒng)計,得到數(shù)據(jù)如下表:
體檢次數(shù) | 一次 | 兩次 | 三次 | 四次 | 五次及以上 |
頻數(shù) | 60 | 20 | 12 | 4 | 4 |
假設該體檢中心為顧客體檢一次的成本費用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤;
(2)該體檢中心要從這100人里至少體檢3次的會員中,按體檢次數(shù)用分層抽樣的方法抽出5人,再從這5人中抽取2人發(fā)放紀念品,求抽到的2人中恰有1人體檢3次的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com