A. | $\sqrt{3}$ | B. | 3 | C. | 2$\sqrt{3}$ | D. | 6 |
分析 由投影相等得出數(shù)量積相等,得出a,b的關系,利用基本不等式得出$\sqrt{ab}$的最大值.計算(2$\sqrt{a}$+$\sqrt$)2的最大值,再開方即可求出2$\sqrt{a}$+$\sqrt$的最大值.
解答 解:∵$\overrightarrow{OA}$與$\overrightarrow{OB}$在$\overrightarrow{OC}$方向上的投影相同,∴$\overrightarrow{OA}•\overrightarrow{OC}=\overrightarrow{OB}•\overrightarrow{OC}$,
即4a-2=4-b,∴4a+b=6.
∵4a+b≥2$\sqrt{4ab}$=4$\sqrt{ab}$,即6≥4$\sqrt{ab}$,∴$\sqrt{ab}$≤$\frac{3}{2}$.
∴(2$\sqrt{a}$+$\sqrt$)2=4a+b+4$\sqrt{ab}$=6+4$\sqrt{ab}$≤6+6=12.
∴2$\sqrt{a}$+$\sqrt$的最大值為$\sqrt{12}$=2$\sqrt{3}$.
故選:C.
點評 本題考查了平面向量的數(shù)量積運算,基本不等式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com