分析 根據(jù)導(dǎo)數(shù)的幾何意義,先求出斜率即可,故先設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),利用導(dǎo)數(shù)求出在x=t處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決
解答 解:∵函數(shù)的導(dǎo)數(shù)為f′(x)=3x2-3,
設(shè)切點(diǎn)坐標(biāo)為(t,t3-3t),
則切線的斜率k=f′(t)=3t2-3=3(t2-1),
則切線方程為y-(t3-3t)=3(t2-1)(x-t),
∵切線過點(diǎn)P(2,-6),
∴-6-(t3-3t)=3(t2-1)(2-t),
化簡得t3-3t2=0,∴t=0或t=3.
∴切線的方程:3x+y=0或24x-y-54=0.
點(diǎn)評 本題主要考查函數(shù)的切線的求解,利用導(dǎo)數(shù)的精華液求出切線的方程是解決本題的關(guān)鍵.注意函數(shù)過點(diǎn)與在點(diǎn)P處的切線的不同.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{11π}{12}$,0)∈A | B. | (-$\frac{7π}{12}$,1)∉A | ||
C. | {(-$\frac{7π}{12}$,1),($\frac{17π}{12}$,1)}⊆A | D. | {($\frac{π}{2}$,1),($\frac{17π}{12}$,1)}⊆A |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com