【題目】如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過(guò)中心,且,

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是橢圓上位于直線(xiàn)同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿(mǎn)足,試討論直線(xiàn)與直線(xiàn)斜率之間的關(guān)系,并求證直線(xiàn)的斜率為定值.

【答案】1;(2)詳見(jiàn)解析.

【解析】

試題(1)利用題中條件先得出的值,然后利用條件,結(jié)合橢圓的對(duì)稱(chēng)性得到點(diǎn)的坐標(biāo),然后將點(diǎn)的坐標(biāo)代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件

得到直線(xiàn)的斜率直線(xiàn)的關(guān)系(互為相反數(shù)),然后設(shè)直線(xiàn)的方程為,將此直線(xiàn)的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),注意到直線(xiàn)的斜率之間的關(guān)系得到點(diǎn)的坐標(biāo),最后再用斜率公式證明直線(xiàn)的斜率為定值.

1,

是等腰三角形,所以,

點(diǎn)代入橢圓方程,求得,

所以橢圓方程為;

2)由題易得直線(xiàn)、斜率均存在,

,所以,

設(shè)直線(xiàn)代入橢圓方程,

化簡(jiǎn)得,

其一解為,另一解為,

可求,

代入得,,

為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,點(diǎn)在橢圓上,且的周長(zhǎng)為

1)求橢圓的方程;

2)已知過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)在直線(xiàn)上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;

2)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車(chē)活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線(xiàn)路公交車(chē)隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:

表一

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根據(jù)以上數(shù)據(jù),繪制了如下圖所示的散點(diǎn)圖.

(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),,均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由);

(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;

(3)推廣期結(jié)束后,車(chē)隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如表2

表2

支付方式

現(xiàn)金

乘車(chē)卡

掃碼

比例

10%

60%

30%

已知該線(xiàn)路公交車(chē)票價(jià)為2元,使用現(xiàn)金支付的乘客無(wú)優(yōu)惠,使用乘車(chē)卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,估計(jì)一名乘客一次乘車(chē)的平均費(fèi)用.

參考數(shù)據(jù):

62.14

1.54

2535

50.12

3.47

其中,

參考公式:對(duì)于一組數(shù)據(jù),……,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車(chē)活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付,某線(xiàn)路公交車(chē)隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點(diǎn)圖:

(I)根據(jù)散點(diǎn)圖判斷在推廣期內(nèi),(c,d為為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次y關(guān)于活動(dòng)推出天數(shù)x的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)

(Ⅱ)根據(jù)(I)的判斷結(jié)果求y關(guān)于x的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次.

參考數(shù)據(jù):

4

62

1.54

2535

50.12

140

3.47

其中,

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解全校學(xué)生體能達(dá)標(biāo)的情況,從全校1000名學(xué)生中隨機(jī)選出40名學(xué)生,參加體能達(dá)標(biāo)預(yù)測(cè),并且規(guī)定體能達(dá)標(biāo)預(yù)測(cè)成績(jī)小于60分的為不合格,否則為合格若該校不合格的人數(shù)不超過(guò)總?cè)藬?shù)的,則全校體能達(dá)標(biāo)合格;否則該校體能達(dá)標(biāo)不合格,需要重新對(duì)全校學(xué)生加強(qiáng)訓(xùn)練現(xiàn)將這40名學(xué)生隨機(jī)分為甲、乙兩個(gè)組,其中甲組有24名學(xué)生,乙組有16名學(xué)生經(jīng)過(guò)預(yù)測(cè)后,兩組各自將預(yù)測(cè)成績(jī)統(tǒng)計(jì)分析如下:甲組的平均成績(jī)?yōu)?/span>70,標(biāo)準(zhǔn)差為4;乙組的平均成績(jī)?yōu)?/span>80,標(biāo)準(zhǔn)差為6(題中所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù)).

1)求這40名學(xué)生測(cè)試成績(jī)的平均分和標(biāo)準(zhǔn)差;

2)假設(shè)該校學(xué)生的體能達(dá)標(biāo)預(yù)測(cè)服從正態(tài)分布用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值.利用估計(jì)值估計(jì):該校學(xué)生體能達(dá)標(biāo)預(yù)測(cè)是否合格?

附:①個(gè)數(shù)的平均數(shù),方差;

②若隨機(jī)變量服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量AQI指數(shù)是反映空氣質(zhì)量狀況指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:

AQI指數(shù)值

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖所示的是某市111日至20AQI指數(shù)變化的折線(xiàn)圖:

下列說(shuō)法不正確的是(

A.天中空氣質(zhì)量為輕度污染的天數(shù)占

B.天中空氣質(zhì)量為優(yōu)和良的天數(shù)為

C.天中AQI指數(shù)值的中位數(shù)略低于

D.總體來(lái)說(shuō),該市11月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,都是等邊三角形,且點(diǎn)在底面上的射影為.

1)證明:的中點(diǎn);

2)求異面直線(xiàn)所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)當(dāng)時(shí),不等式恒成立,求m的取值范圍;

2)求證:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案