【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)代入,對求導(dǎo),代入得到斜率,再由點(diǎn)斜式寫出直線方程;(2)對求導(dǎo),令,然后再求導(dǎo)得到,可得時(shí),,所以函數(shù)在上單調(diào)遞增,再根據(jù),按和進(jìn)行分類討論,得到函數(shù)在上存在唯一零點(diǎn),從而得到若函數(shù)在區(qū)間上有極值,則.
(1)當(dāng)時(shí),,,
則,,
故曲線在處的切線方程為:,即.
(2),,
令,則,
當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,
又,故
①當(dāng)時(shí),,,在上單調(diào)遞增,無極值;
②當(dāng)時(shí),,,
令,則,
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,,
所以在上,恒成立,
所以,
所以函數(shù)在上存在唯一零點(diǎn),
所以在上單調(diào)遞減,在上單調(diào)遞增,此時(shí)函數(shù)存在極小值.
綜上,若函數(shù)在區(qū)間上有極值,則.
故實(shí)數(shù)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè),對任意恒有,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)與軸垂直時(shí),求直線的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已定義,已知函數(shù)的定義域都是,則下列四個(gè)命題中為真命題的是_________.(寫出所有真命題的序號)
① 若都是奇函數(shù),則函數(shù)為奇函數(shù).
② 若都是偶函數(shù),則函數(shù)為偶函數(shù).
③ 若都是增函數(shù),則函數(shù)為增函數(shù).
④ 若都是減函數(shù),則函數(shù)為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發(fā)沿以每秒2米的速度向快走,同時(shí)乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,記秒時(shí)甲、乙兩人所在位置分別為,,通過計(jì)算,判斷下列說法是否正確:
(1)當(dāng)時(shí),函數(shù)取最小值;
(2)函數(shù)在區(qū)間上是增函數(shù);
(3)若最小,則;
(4)在上至少有兩個(gè)零點(diǎn);
其中正確的判斷序號是______(把你認(rèn)為正確的判斷序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的長軸長為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)O,左右焦點(diǎn)分別為,的橢圓的離心率為,焦距為,A,B是橢圓上兩點(diǎn).
(1)若直線與以原點(diǎn)為圓心的圓相切,且,求此圓的方程;
(2)動點(diǎn)P滿足:,直線與的斜率的乘積為,求動點(diǎn)P的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com