【題目】已知函數.
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)若函數在區(qū)間上存在極值,求實數的取值范圍;
(Ⅲ)設,對任意恒有,求實數的取值范圍。
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)求出導函數得到斜率,利用點斜式得到切線方程;
(Ⅱ)求出函數的極值,再探討函數在區(qū)間 (m,m)(其中a>0)上存在極值,尋找關于m的不等式,求出實數m的取值范圍;
(Ⅲ)先求導,再構造函數h(x)=lnx,求出h(x)的最大值小于0即可.
解:(I).
故切線的斜率為,又f(e)=
∴切線方程為:,即
(II).當時,
當x>l時,
f(x)在(0,1)上單調遞增,在(1.+)上單調遞減。
故f(x)在x=l處取得極大值。
∵f(x)在區(qū)間(m,m+)(m>0)上存在極值,
∴0<m<1且m+>1,解得
(Ⅲ).由題可知.a≠0,且
,
,
當a<0時,g(x)>0.不合題意。
當a>0時,由可得恒成立
設,則
求導得:
設
①當0<a≤l時,△≤0,此時:
∴h(x)在(0,1)內單調遞增,又h(l)=0,所以h(x)<h(l)=0.
所以0<a≤l符合條件.
②當a>1時,△>0,注意到t(0)=1,t(1)=4(1-a)<0,存在xo(0,1),使得t(x0)=0,
于是對任意,t(x)<0,h’(x)<0.則h(x)在(xo,1)內單調遞減,又h(l)=0,所以當時,h(x)>0,不合要求,
綜合①②可得0<a≤1
科目:高中數學 來源: 題型:
【題目】在所有棱長都相等的三棱錐中,D,E,F分別是AB,BC,CA的中點,下列四個命題:
(1)平面PDF;(2)平面;
(3)平面平面;(4)平面平面.
其中正確命題的序號為________.
A.(2)(3)B.(1)(3)C.(2)(4)D.(1)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家具公司生產甲、乙兩種書柜,制柜需先制白胚再油漆,每種柜的制造白胚工時數、油漆工時數的有關數據如下:
工藝要求 | 產品甲 | 產品乙 | 生產能力(工時/天) |
制白胚工時數 | 6 | 12 | 120 |
油漆工時數 | 8 | 4 | 64 |
單位利潤 | 20元 | 24元 |
則該公司合理安排這兩種產品的生產,每天可獲得的最大利潤為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B為橢圓()和雙曲線的公共頂點,P、Q分別為雙曲線和橢圓上不同于A、B的動點,且(,),設AP、BP、AQ、BQ的斜率分別為、、、.
(1)若,求的值(用a、b的代數式表示);
(2)求證:;
(3)設、分別為橢圓和雙曲線的右焦點,若,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,離心率為,點在橢圓上,且的周長為.
(1)求橢圓的方程;
(2)已知過點的直線與橢圓交于兩點,點在直線上,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com