5.若不等式sin2x-asinx+2≥0對任意的x∈(0,$\frac{π}{2}$]恒成立,則實數(shù)a的最大值是( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.2D.3

分析 利用換元法令t=sinx,不等式可整理為t2-at+2≥0恒成立,得$a≤\frac{{t}^{2}+2}{t}$,利用分離常數(shù)法求出實數(shù)a的最大值即可.

解答 解:設(shè)t=sinx,∵x∈(0,$\frac{π}{2}$],∴t∈(0,1],
則不等式即為t2-at+2≥0在t∈(0,1]恒成立,
即$a≤\frac{{t}^{2}+2}{t}=t+\frac{2}{t}$在t∈(0,1]恒成立,
∴a≤3.
故選:D.

點評 本題主要考查不等式恒成立問題,利用換元法結(jié)合基本不等式求出函數(shù)的最值是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以下三個命題:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)隨機變量X~N(μ,σ2),當(dāng)μ一定時,σ越小,其密度函數(shù)圖象越“矮胖”;
(3)在回歸分析中,比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的,模型的擬合效果越好.
其中其命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商店舉行三周年店慶活動,每位會員交會員費50元,可享受20元的消費,并參加一次抽獎活動,從一個裝有標號分別為1,2,3,4,5,6的6只均勻小球的抽獎箱中,有放回的抽兩次球,抽得的兩球標號之和為12,則獲一等獎價值a元的禮品,標號之和為11或10,獲二等獎價值100元的禮品,標號之和小于10不得獎.
(1)求各會員獲獎的概率;
(2)設(shè)商店抽獎環(huán)節(jié)收益為ξ元,求ξ的分布列;假如商店打算不賠錢,a最多可設(shè)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(1,$\frac{3}{2}$),且左焦點為F1(-1,0).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點分別為A,B,P為橢圓C上一動點,直線PA,PB分別交直線x=a2于點D,E.
試探究D,E兩點縱坐標的乘積是否為定值?若是定值,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}{y≥x}\\{x+3y≤4}\\{x≥-2}\end{array}\right.$,z=x+2y的最大值為(  )
A.3B.4C.-6D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)部分圖象如圖所示,點P為f(x)與x軸的交點,點A,B分別為f(x)圖象的最低點與最高點,$\overrightarrow{PA}$•$\overrightarrow{PB}$=|$\overrightarrow{PA}$|2
(Ⅰ)求ω的值;
(Ⅱ)若x∈[-1,1],求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$+$\overrightarrow$=(2,-1),$\overrightarrow{a}$=(1,2),則$\overrightarrow{a}$•$\overrightarrow$=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=1+$\frac{1}{{x}^{2}+1}$在區(qū)間[3,+∞)上( 。
A.有最小值無最大值B.有最大值無最小值
C.既有最大值又有最小值D.既無最大值又無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直角坐標系中,曲線C參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=2-2sinα}\end{array}\right.$(0≤α≤2π),現(xiàn)以直角坐標系的原點為極點,以x軸正半軸為極軸,建立極坐標系,則曲線C的極坐標方程是ρ=4sinθ.

查看答案和解析>>

同步練習(xí)冊答案