9.已知函數(shù)f(x)=xlnx,g(x)=$\frac{a}{x}$(其中a∈R)
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)h(x)=f′(x)+g(x)-1,試確定h(x)的單調(diào)區(qū)間及最值;
(Ⅲ)求證:對于任意的正整數(shù)n,均有e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.(注:e為自然對數(shù)的底數(shù))

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅱ)求出h(x)的導(dǎo)數(shù),通過討論a的范圍求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅲ)令a=1,得到$\frac{1}{x}$≥1-lnx=ln$\frac{e}{x}$,亦即 ${e}^{\frac{1}{x}}$≥$\frac{e}{x}$,分別取 x=1,2,…,n,相乘即可.

解答 解:(Ⅰ)f(x)=xlnx,(x>0),f′(x)=1+lnx,
令f′(x)>0,解得:x>$\frac{1}{e}$,令f′(x)<0,解得:0<x<$\frac{1}{e}$,
∴f(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
∴f(x)的極小值是f($\frac{1}{e}$)=-$\frac{1}{e}$;
(Ⅱ)h(x)=f′(x)+g(x)-1=lnx+$\frac{a}{x}$,(x>0),
h′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,
①a≤0時,h′(x)>0,h(x)在(0,+∞)遞增,無最值,
②a>0時,令h′(x)>0,解得:x>a,令h′(x)<0,解得:0<x<a,
∴h(x)在(0,a)遞減,在(a,+∞)遞增,
∴h(x)min=h(a)=1+lna,
(Ⅲ)取a=1,由(Ⅱ)知,h(x)=lnx+$\frac{1}{x}$≥f(1)=1,
∴$\frac{1}{x}$≥1-lnx=ln$\frac{e}{x}$,亦即 ${e}^{\frac{1}{x}}$≥$\frac{e}{x}$,
分別取 x=1,2,…,n得${e}^{\frac{1}{1}}$≥$\frac{e}{1}$,
${e}^{\frac{1}{2}}$≥$\frac{e}{2}$,${e}^{\frac{1}{3}}$≥$\frac{e}{3}$,…,${e}^{\frac{1}{n}}$≥$\frac{e}{n}$,
將以上各式相乘,得:e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.

點(diǎn)評 本題主要考查了定積分的概念及利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間、最值的問題,屬于難度較大的題型,在高考中常作壓軸題出現(xiàn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.y=ln(sin(2x+$\frac{π}{3}$))的定義域為(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=ex-ax在[3,+∞)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(-∞,e3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知(1+x)n的展開式中第3項與第8項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為2048.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)是區(qū)間[a,b)上的增函數(shù),也是區(qū)間[b,c]上的增函數(shù),則函數(shù)f(x)在區(qū)間[a,c]上( 。
A.是減函數(shù)B.是增函數(shù)或減函數(shù)
C.是增函數(shù)D.未必是增函數(shù)或減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等腰三角形ABC繞底邊上的中線AD所在的直線旋轉(zhuǎn)半周所得的幾何體是( 。
A.圓臺B.圓錐C.圓柱D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AC是圓O的直徑,ABCD是圓內(nèi)接四邊形,BE⊥DE于點(diǎn)E,且BE與圓O相切于點(diǎn)B.
(1)求證:CB平分∠ACE;
(2)若AB=6,BE=3,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=2-t}\\{y=-1+t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A、B兩點(diǎn),點(diǎn)P(2,-1)在直線l上,求線段|AB|的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.彭州中學(xué)計劃給新高一某班安排一張課表,課表含語文、數(shù)學(xué)、外語、物理、化學(xué)、生物各一節(jié),共6節(jié)課,要求語文、外語排在前三節(jié),生物排在最后兩節(jié),物理、化學(xué)不相鄰,則不同的排法共有( 。
A.40種B.48種C.52種D.60種

查看答案和解析>>

同步練習(xí)冊答案