11.已知復(fù)數(shù)z=(a-i)(1+i)(a∈R,i是虛數(shù)單位)是實(shí)數(shù),則a=1.

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件即可得出.

解答 解:復(fù)數(shù)z=(a-i)(1+i)=a+1+(a-1)i是實(shí)數(shù),則a-1=0,解得a=1.
故答案為:1.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)為實(shí)數(shù)的充要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知變量x,y(x,y∈R)滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥5}\\{y-3≤0}\end{array}}\right.$,若不等式(x+y)2≥c(x2+y2)(c∈R)恒成立,則實(shí)數(shù)c的最大值為$\frac{25}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足Sn=$\frac{1}{2}{n^2}$+An,若a2=2,則A=$\frac{1}{2}$,數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項(xiàng)和Tn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若變量x,y滿足$\left\{{\begin{array}{l}{x≤3}\\{y≤x}\\{x+y≥4}\end{array}}\right.$,則z=2x-y的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|-1≤x≤2},B={x|-1<x<4,x∈Z},則A∩B=( 。
A.{0,1,2}B.[0,2]C.{0,2}D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.各項(xiàng)為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a5a6a7=10,則a9a10a11=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線${x^2}-\frac{y^2}{b^2}=1({b>0})$的離心率為$\sqrt{3}$,則b=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)解不等式|x-1|+|x-2|≥5;
(2)已知$\frac{1}{m}+\frac{1}{n}=1({m>0,n>0})$,若m+4n≥|x-1|-|x-a|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知拋物線y2=-2px過點(diǎn)M(-2,2).則p=1.準(zhǔn)線方程是x=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案