12.某產(chǎn)品的廣告費(fèi)用x(百萬元)與銷售額y(百萬元)的統(tǒng)計(jì)數(shù)據(jù)如表:
x23479
y2633m5475
根據(jù)表中數(shù)據(jù),用最小二乘法得出y與x的線性回歸方程為$\stackrel{∧}{y}$=8.6x+5,則表中的m的值為( 。
A.46B.48C.50D.52

分析 求出樣本中心,代入回歸直線方程求解即可.

解答 解:由題意可得:$\overline{x}=\frac{2+3+4+7+9}{5}$=5,$\overline{y}$=$\frac{26+33+m+54+75}{5}$=$\frac{188+m}{5}$,
可得:$\frac{188+m}{5}=8.6×5+5$,解得m=52.
故答案為:52.

點(diǎn)評 本題考查回歸直線方程的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.寫出函數(shù)$y=\sqrt{3}{sin^2}x+2sinxcosx-\sqrt{3}{cos^2}x$的值域、單調(diào)遞增區(qū)間、對稱軸方程、對稱中心坐標(biāo)(只需寫出答案即可),并用五點(diǎn)法作出該函數(shù)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與g($\frac{1}{x}$)的大小關(guān)系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<$\frac{1}{x}$對任意x>0成立?若存在求出x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=ax2-c滿足:-4≤f(1)≤-1,-1≤f(2)≤5,則f(3)應(yīng)滿足( 。
A.-7≤f(3)≤26B.-4≤f(3)≤15C.-1≤f(3)≤20D.$-\frac{28}{3}≤f(3)≤\frac{35}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖為某市2017年2月28天的日空氣質(zhì)量指數(shù)折線圖.

由中國空氣質(zhì)量在線監(jiān)測分析平臺提供的空氣質(zhì)量指數(shù)標(biāo)準(zhǔn)如下:
空氣質(zhì)量指數(shù)(0,50](50,100](100,150](150,200](200,300]300以上
空氣質(zhì)量等級1級優(yōu)2級良3級輕度污染4級中度污染5級重度污染6級嚴(yán)重污染
(Ⅰ)請根據(jù)所給的折線圖補(bǔ)全下方的頻率分布直方圖(并用鉛筆涂黑矩形區(qū)域),并估算該市2月份空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)的平均數(shù)(保留小數(shù)點(diǎn)后一位);

(Ⅱ)研究人員發(fā)現(xiàn),空氣質(zhì)量指數(shù)測評中PM2.5與燃燒排放的CO兩個(gè)項(xiàng)目存在線性相關(guān)關(guān)系,以100ug/m3為單位,如表給出PM2.5與CO的相關(guān)數(shù)據(jù):
CO(x)0.511.5
PM2.5(y)124
求y關(guān)于x的回歸方程,并估計(jì)當(dāng)CO排放量是200ug/m3時(shí),PM2.5的值.
(用最小二乘法求回歸方程的系數(shù)是$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x0)=aexlnx+$\frac{b{e}^{x-1}}{x}$,曲線y=f(x)在點(diǎn)(1,f(1)處的切線為y=e(x-1)+2.
(Ⅰ)求a,b; 
(Ⅱ)證明:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)A(3,0),$\overrightarrow{EA}$=(2,1),$\overrightarrow{EF}$=(1,2),若P(2,0)滿足$\overrightarrow{EP}$=λ$\overrightarrow{EA}$+μ$\overrightarrow{EF}$,則λ+μ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=(2n+1)an-(2n-1)•2n-1-1
(1)求a1,a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow a•\overrightarrow b$,則“$\overrightarrow a∥\overrightarrow b$”是“$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}|$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案