已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)).若直線與圓相切,求實(shí)數(shù)的值.

解析試題分析:先將圓的極坐標(biāo)方程及直線的參數(shù)方程化為直角坐標(biāo)方程,再利用直線與圓相切的充要條件:圓心到直線距離等于半徑,得
試題解析:由得圓的方程為,4分;又由,得直線與圓相切,,.  10分
考點(diǎn):化極坐標(biāo)方程及參數(shù)方程為普通方程,直線與圓相切,點(diǎn)到直線距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的極坐標(biāo)方程為sincos =3,則Cl與C2交點(diǎn)在直角坐標(biāo)系中的坐標(biāo)為         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線
(1)求曲線的普通方程;
(2)若點(diǎn)在曲線上,點(diǎn),當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),求中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在曲線C1:(θ為參數(shù),0≤θ<2π)上求一點(diǎn),使它到直線C2:(t為參數(shù))的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)),直線經(jīng)過定點(diǎn)P(3,5),傾斜角為(1)寫出直線的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與曲線C相交于A、B兩點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是ρ=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為.
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的參數(shù)方程為是參數(shù)是曲線軸正半軸的交點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)與曲線只有一個(gè)公共點(diǎn)的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知P為半圓C:為參數(shù),)上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),
O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與C的弧的長度均為。
(Ⅰ)以O(shè)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(Ⅱ)求直線AM的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)).試求直線l和曲線C的普通方程,并求出它們的公共點(diǎn)的坐

查看答案和解析>>

同步練習(xí)冊(cè)答案