8.已知向量$\overrightarrow a$=(cosx,-$\frac{1}{2}$),$\overrightarrow b$=($\sqrt{3}$sin x,cos 2x),x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f (x)的最小正周期及單調(diào)遞增區(qū)間
(2)求f(x)在[0,$\frac{3π}{4}$]上的最大值和最小值.

分析 (1)先根據(jù)向量的數(shù)量積公式,和三角函數(shù)基本公式化簡得到f(x)=sin(2x-$\frac{π}{6}$),再根據(jù)正弦函數(shù)的周期和單調(diào)性即可求出答案,
(2)根據(jù)(1)的結(jié)論得到函數(shù)的單調(diào)區(qū)間,即可求出最值.

解答 解:(1)向量$\overrightarrow a$=(cosx,-$\frac{1}{2}$),$\overrightarrow b$=($\sqrt{3}$sin x,cos 2x),x∈R,
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
∴T=$\frac{2π}{2}$=π,
∴-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],
(2)由(1)可知,函數(shù)f(x)在[0,$\frac{π}{3}$]上單調(diào)遞增,在($\frac{π}{3}$,$\frac{3π}{4}$]上單調(diào)遞減,
∴f(x)max=f($\frac{π}{3}$)=1,
∵f(0)=sin(-$\frac{π}{6}$)=-$\frac{1}{2}$,f($\frac{3π}{4}$)=sin($\frac{3π}{2}$-$\frac{π}{6}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$,
∴f(x)min=-$\frac{\sqrt{3}}{2}$

點評 本題考查了向量的數(shù)量積公式和三角函數(shù)的化簡和正弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC中,a=1,b=$\sqrt{3}$,A=30°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$+x2-x(其中e=2.71828…).
(1)求f(x)在(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=ln[f(x)-x2+x]-b的兩個零點為x1,x2,證明:g′(x1)+g′(x2)>g′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x-m]}{x-m}$,其中m∈N*,則給出以下四個結(jié)論其中正確是( 。
A.函數(shù)f(x)在(m+1,+∞)上的值域為$(\frac{1}{2},1]$B.函數(shù)f(x)的圖象關(guān)于直線x=m對稱
C.函數(shù)f(x)在(m,+∞)是減函數(shù)D.函數(shù)f(x)在(m+1,+∞)上的最小值為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.化簡2n-Cn1×2n-1+Cn2×2n-2+…+(-1)n-1Cnn-1×2=(  )
A.1B.(-1)nC.1+(-1)nD.1-(-1)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ex+x2-x,若對任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-ax-5(x≤1)}\\{\frac{a}{x}(x>1)}\end{array}\right.$滿足對任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,則a的范圍是( 。
A.-3≤a<0B.-3≤a≤-2C.a≤-2D.a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知關(guān)于x的不等式ax2+ax+1>0對任意x∈R恒成立,則實數(shù)a的取值范圍是( 。
A.a≥0B.a>4C.0<a<4D.0≤a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等比數(shù)列{an}中,a2016=8a2013,則公比q的值為( 。
A.8B.4C.3D.2

查看答案和解析>>

同步練習(xí)冊答案