10.過點(diǎn)(1,0)且與直線x-y+2=0垂直的直線方程是( 。
A.x-y+1=0B.x-y-1=0C.x+y+1=0D.x+y-1=0

分析 方法一,利用兩條直線互相垂直,斜率之積等于-1,求出垂線的斜率,再求垂線的方程;
方法二,根據(jù)兩條直線互相垂直的關(guān)系,設(shè)出垂線的方程,利用垂線過某點(diǎn),求出垂線的方程.

解答 解:方法一,直線x-y+2=0的斜率是1,
則與這條直線垂直的直線方程的斜率是-1,
∴過點(diǎn)(1,0)且與直線x-y+2=0垂直的直線方程為:
y-0=-(x-1),
即y+x-1=0;
方法二,設(shè)與直線x-y+2=0垂直的直線方程為x-y+a=0,
且該垂線過過點(diǎn)(1,0),
∴1-0+a=0,解得a=-1,
∴這條垂線的直線方程為y+x-1=0.
故選:D.

點(diǎn)評(píng) 本題考查了直線方程的求法與應(yīng)用問題,也考查了直線垂直的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f(x)為可導(dǎo)函數(shù),且滿足$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=-2,則函數(shù)y=f(x)在x=1處的導(dǎo)數(shù)為( 。
A.1B.-1C.1或-1D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=ax2+bx+c(a≠0)的圖象與直線l交于兩點(diǎn)A(t,t3-t),B(2t2+3t,t3+t2),其中t≠0且t≠-1,則f'(t2+2t)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若p:a∈R且-1<a<1,q:關(guān)于x的一元二次方程:x2+(a+1)x+a-2=0的一個(gè)根大于零,另一個(gè)根小于零,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.研究函數(shù)f(x)=$\frac{1}{{x}^{2}+4x+3}$有無最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直三棱柱ABC-A1B1C1中,∠BCA=90°,M是AB的中點(diǎn),BC=CA=CC1,則C1M與面BCC1B1所成的角的正弦值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{6}}{6}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{30}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)═ax2+bx+1,a,b∈R.
(I)若關(guān)于x的不等式f(x)>0的解集為(-1,2),求a、b的值;
(Ⅱ)已知f(1)=0,當(dāng)a>1時(shí),求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,∠A,∠B,∠C所對(duì)應(yīng)的邊分別為a,b,c.若∠C=30°,a=$\sqrt{2}$c,則∠B等于(  )
A.45°B.105°C.15°或105°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓C過點(diǎn)A(2,0),B(4,0),直線l過原點(diǎn)O,與圓C交于P,Q兩點(diǎn),則$\overrightarrow{OP}$•$\overrightarrow{OQ}$=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案