19.函數(shù)f(x)=lnx-x零點(diǎn)的個(gè)數(shù)為(  )
A.無(wú)窮多B.3C.1D.0

分析 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值最值即可判斷出零點(diǎn)個(gè)數(shù).

解答 解:f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,可知當(dāng)x=1時(shí),函數(shù)f(x)取得最大值,f(1)=-1.
因此函數(shù)f(x)無(wú)零點(diǎn).
故選:D.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值最值判斷出零點(diǎn)個(gè)數(shù),考查了推理能力與計(jì)算能力,屬于坐中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cost}\\{y=1+\sqrt{3}sint}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=1.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$A=(\begin{array}{l}{1}&{0}&{1}&{0}\\{2}&{1}&{2}&{0}\\{0}&{0}&{1}&{0}\\{1}&{1}&{1}&{1}\end{array})$,試用矩陣初等行變換法求A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,a、b、c分別為A、B、C的對(duì)邊,a=$\sqrt{6}$,b=4,2cos2AsinB=(2-cosB)sin2A.
(1)求c的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.計(jì)算1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,則猜想:1+2+3+…+(n-1)+n+(n+1)+n+…+3+2+1=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將點(diǎn)M的極坐標(biāo)(4,$\frac{π}{6}$)化成直角坐標(biāo)為( 。
A.(2,2$\sqrt{3}$)B.$(2\sqrt{3},2)$C.$(2\sqrt{2},2\sqrt{2})$D.(-2$\sqrt{3}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,ABCD是菱形,PA⊥平面ABCD
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=cos2(x-$\frac{π}{6}}$)-cos2x.
(1)求f(x)的最小正周期及單調(diào)增區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{4}}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知對(duì)任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí)(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0

查看答案和解析>>

同步練習(xí)冊(cè)答案