分析 (Ⅰ)推導出MN∥AD,PA⊥AD,從而AD⊥平面PBA,進而MN⊥平面PBA,由此能證明平面AMN⊥平面PBA.
(Ⅱ)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系A-xyz,利用向量法能求出二面角M-AC-D的余弦值.
解答 證明:(Ⅰ)∵MN∥BC,BC∥AD,∴MN∥AD,
∵PA⊥平面ABCD,
∴PA⊥AD,
又∵AD⊥AB,PA∩AB=A,
∴AD⊥平面PBA,
∴MN⊥平面PBA,
又∵MN?平面AMN,
∴平面AMN⊥平面PBA.…(6分)
解:(Ⅱ)如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系A-xyz,
不妨設AB=1,則:A(0,0,0),C(1,1,0),$M(\frac{1}{2},0,\frac{1}{2})$,
∴$\overrightarrow{AC}=(1,1,0)$,$\overrightarrow{AM}=(\frac{1}{2},0,\frac{1}{2})$,
設平面AMC的法向量$\overrightarrow n=(x,y,z)$,則:$\left\{\begin{array}{l}x+y=0\\ \frac{1}{2}x+\frac{1}{2}z=0\end{array}\right.$,
令x=1,則y=-1,z=-1,∴$\overrightarrow n=(1,-1,-1)$
平面ADC的一個法向量為$\overrightarrow m=(0,0,1)$,
∴$cos?\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{|\overrightarrow m||\overrightarrow n|}=-\frac{1}{{\sqrt{3}}}=-\frac{{\sqrt{3}}}{3}$,
∴二面角M-AC-D的余弦值為$-\frac{{\sqrt{3}}}{3}$.…(12分)
點評 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
價格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
快遞業(yè)務總量 | 34 | 55 | 71 | 85 | 105 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com