5.如圖,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,點M,N分別在PB,PC上,且MN∥BC.
(Ⅰ)證明:平面AMN⊥平面PBA;
(Ⅱ)若M為PB的中點,求二面角M-AC-D的余弦值.

分析 (Ⅰ)推導出MN∥AD,PA⊥AD,從而AD⊥平面PBA,進而MN⊥平面PBA,由此能證明平面AMN⊥平面PBA.
(Ⅱ)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系A-xyz,利用向量法能求出二面角M-AC-D的余弦值.

解答 證明:(Ⅰ)∵MN∥BC,BC∥AD,∴MN∥AD,
∵PA⊥平面ABCD,
∴PA⊥AD,
又∵AD⊥AB,PA∩AB=A,
∴AD⊥平面PBA,
∴MN⊥平面PBA,
又∵MN?平面AMN,
∴平面AMN⊥平面PBA.…(6分)
解:(Ⅱ)如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系A-xyz,
不妨設AB=1,則:A(0,0,0),C(1,1,0),$M(\frac{1}{2},0,\frac{1}{2})$,
∴$\overrightarrow{AC}=(1,1,0)$,$\overrightarrow{AM}=(\frac{1}{2},0,\frac{1}{2})$,
設平面AMC的法向量$\overrightarrow n=(x,y,z)$,則:$\left\{\begin{array}{l}x+y=0\\ \frac{1}{2}x+\frac{1}{2}z=0\end{array}\right.$,
令x=1,則y=-1,z=-1,∴$\overrightarrow n=(1,-1,-1)$
平面ADC的一個法向量為$\overrightarrow m=(0,0,1)$,
∴$cos?\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{|\overrightarrow m||\overrightarrow n|}=-\frac{1}{{\sqrt{3}}}=-\frac{{\sqrt{3}}}{3}$,
∴二面角M-AC-D的余弦值為$-\frac{{\sqrt{3}}}{3}$.…(12分)

點評 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如表:
價格x(元/kg)1015202530
日需求量y(kg)1110865
(Ⅰ)求y關于x的線性回歸方程;
(Ⅱ)當價格x=40元/kg時,日需求量y的預測值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,則f(2015)+f(2016)=( 。
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.兩個數(shù)272與595的最大公約數(shù)是17.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右頂點為A1,A2,拋物線E以坐標原點為頂點,以A2為焦點.若雙曲線C的一條漸近線與拋物線E及其準線分別交于點M,N,且$\overrightarrow{{A_1}N}=\overrightarrow{M{A_2}}$,∠MA1N=135°,則雙曲線C的離心率為(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如表中給出了2011年~2015年某市快遞業(yè)務總量的統(tǒng)計數(shù)據(jù)(單位:百萬件)
年份20112012201320142015
年份代碼12345
快遞業(yè)務總量34557185105
(Ⅰ)在圖中畫出所給數(shù)據(jù)的折線圖;
(Ⅱ)建立一個該市快遞量y關于年份代碼x的線性回歸模型;
(Ⅲ)利用(Ⅱ)所得的模型,預測該市2016年的快遞業(yè)務總量.
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
斜率:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,縱截距:$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知a∈R,函數(shù)f1(x)=x2,f2(x)=aln(x+2).
(Ⅰ)令f(x)=$\left\{\begin{array}{l}{{f}_{1}(x),x≤0}\\{{f}_{2}(x),x>0}\end{array}\right.$,若函數(shù)f(x)的圖象上存在兩點A、B滿足OA⊥OB(O為坐標原點),且線段AB的中點在y軸上.求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=f1(x)+f2(x)存在兩個極值點x1、x2,求證:g(x1)+g(x2)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設Sn為等差數(shù)列{an}的前n項和,若a5>0,a1+a10<0,則當Sn最大時正整數(shù)n為(  )
A.4B.5C.6D.10

查看答案和解析>>

同步練習冊答案